

Midterm 2 Review Document Solution
CS 61B Spring 2018

Antares Chen + Kevin Lin

Introduction
Let me preface this packet with the following statement: this packet is a ​monster​. Don’t even
think ​FOR A SECOND​ that it would make sense to sit down and do all of it in one go. The
purpose of this packet is to give you a compendium of targeted supplementary problems ranked
by difficulty.

Like the first document, it reflects all material that you will have already seen in labs and lecture.
Do not use this as a “be all end all” guide! It is still highly recommended that you review
previous and external course material.

For example, you should still do many practice midterms from previous semesters both CS
61BL and CS 61B. Use the midterms a heuristic for your knowledge of the material, then use
the lab guides and textbook to relearn the material.

There are still three modes: (easy) which represents basic understanding which you should
achieve after doing the lab, (medium) which consists of midterm difficulty level problems, and
(hard) which has problems not meant to be trivially solvable!

REMEMBER if you’re feeling down about things, take a step back and just breathe. Maybe take
a walk, buy a soda and stress cook some turkey soup (trust me it’s actually really cathartic). No
matter what believe in yourself, and if you don’t do that then at least believe in me who believes
in you.

Introduction

Iterating Collections
Easy Mode
Medium Mode
Hard Mode

Generics
Easy Mode
Medium Mode
Hard Mode

Asymptotics
Easy Mode
Medium Mode
Hard Mode

Tree Structures

Easy Mode
Medium Mode
Hard Mode

Binary Search Trees
Easy Mode
Medium Mode
Hard Mode

Balanced Search Trees
Easy Mode
Medium Mode
Hard Mode

Hashbrowns
Easy Mode
Medium Mode

Heaps and Priority Queues
Easy Mode
Medium Mode
Hard Mode

Iterating Collections

Easy Mode
Warm-up Questions

1) How do you make an object iterable? What are the three methods for iterators? What is the

interface that you need to implement?

Implement ​Iterable<T>​ which requires a method ​Iterator<T> iterator()​. ​Iterator
contains method declarations for ​hasNext()​, ​next()​, and (optionally) ​remove()​.

2) It’s bad for ​hasNext()​ to change the state of the iterator. How could ​hasNext()​ change the
iterators state and why is it bad?

Changing the value of an instance variable is a way of changing state. This is bad because
hasNext()​ should only return the status of the iterator, not change any component of it.

3) Why is ​Collection​ an interface?

There are many different types of ​Collections​ like ​List​, ​Set​, ​Map​, ​SortedList​, etc. each
with their own implementations

Stack Times​ Some of the operations in the ​Collection​ interface can be implemented
generally without knowledge of the underlying ​Collection​ mechanics. To make it simpler, we
make an abstract class that implements some of these functionalities.

public​ ​abstract​ ​class​ ​SimpleCollection​<​E​>​ ​implements​ ​Collection​<​E​>​ {

 ​/** The number of elements in this SimpleCollection. */
 ​protected​ ​int​ size;

 ​public​ ​SimpleCollection​()​ {
 size ​=​ ​0;
 }

 ​/** Returns true if ELEM was added. */
 ​public​ ​abstract​ ​boolean​ add​(​E elem​);

 ​/** Returns true if removing ELEM changed the collection. */
 ​public​ ​abstract​ ​boolean​ remove​(​E elem​);

 ​/** Returns the size of this collection. */
 ​public​ ​int​ size​()​ {
 ​return​ size;
 }

 ​/** Returns true if all elements in C were added. */
 ​public​ ​boolean​ addAll​(​Collection​<?​ ​extends​ E​>​ c​)​ {
 ​boolean​ added ​=​ ​true;
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ c​.​size​();​ i ​+=​ ​1​)​ {
 added ​=​ added ​&&​ add​(​c​.​get​(​i​));
 }
 ​return​ added;
 }

 ​/** Returns true if the collection was changed. */
 ​public​ ​boolean​ removeAll​(​Collection​<?>​ c​)​ {
 ​boolean​ removed ​=​ ​false;
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ c​.​size​();​ i ​+=​ ​1​)​ {
 removed ​=​ removed ​||​ remove​(​c​.​get​(​i​));
 }
 ​return​ removed;
 }

 ​// some more methods that I'm too lazy to write
}

Given this implementation of ​SimpleCollection​, you are now to implement a Stack that is
backed by an Array. Remember that a Stack only allows for adds and removes from the top of
the stack. If remove is called with an element not at the top of the stack, you may throw an
IllegalArgumentException​.

public​ ​class​ ​ArrayStack​<​E​>​ ​extends​ ​SimpleCollection​<​E​>​ ​{
 ​private E[] data;
 private int currIndex;

 public ArrayStack() {
 data = (E[]) new Object[2];
 currIndex = 0;
 }

 public boolean add(E elem) {
 if (currIndex >= data.length) {
 resize();
 }
 data[currIndex] = elem;
 currIndex += 1;
 size += 1;
 return true;
 }

 public boolean remove(E elem) {
 if (currIndex <= 0) {
 throw new NoSuchElementException();
 } else if (!elem.equals(data[currIndex - 1])) {
 throw new IllegalArgumentException();
 }
 currIndex -= 1;
 size -= 1;
 return true;
 }

 private void resize() {
 E[] newData = (E[]) new Object[data.length * 2];
 for (int i = 0; i < data.length; i += 1) {
 newData[i] = data[i];
 }
 data = newData;
 }
}

Medium Mode
ImageIterator ​We can represent an image as a 2D array of ​Color​ objects (check the javadoc if
you’re interested). Now suppose we wish to sequentially process the image pixel by pixel, row
by row. Write an ​ImageIterator​ that does just that.

public​ ​class​ ​ImageIterator​ ​implements​ ​Iterator​<​Color​>​ {
 ​Color​[][]​ image;
 ​int​ currX;
 ​int​ currY;

 ​public​ ​ImageIterator​(​Color​[][]​ image​)​ {
 ​this.image = image​;
 currX ​=​ ​0​;
 currY ​=​ ​0​;
 }

 ​public​ ​void​ hasNext​()​ {
 ​if​ ​(​image.length == 0​ ​||​ ​image[currY].length == 0​)​ {
 ​return​ ​false;
 }
 ​return​ ​currY < image.length​ ​&&​ ​currX < image[currY].length​;
 }

 ​public​ ​Color​ next​()​ {
 ​Color value = image[currY][currX]​;
 currY +​=​ ​(​currX + 1​)​ ​/​ ​image[currY].length​;
 currX ​=​ ​(​currX + 1​)​ ​%​ ​image[currY].length​;
 ​return value​;
 }

 ​public​ ​void​ remove​()​ {
 ​throw​ ​new​ ​UnsupportedOperationException​();
 }
}

Hard Mode
Repeaterator​ The ​Repeaterator​ is an iterator that iterates through an int array, repeating each
element the value number of times. A ​Repeaterator​ for ​[1, 2, 3]​ would return the sequence
1, 2, 2, 3, 3, 3​. Fill out the following implementation for ​Repeaterator​. Assume that the
given array only holds non-negative numbers.

public​ ​class​ ​Repeaterator​ ​implements​ ​Iterator​<​Integer​>​ {

 ​private​ ​int​[]​ data;
 ​private​ ​int​ index;
 ​private​ ​int​ repeats;

 ​public​ ​Repeaterator​(​int​[]​ array​)​ {
 ​data = array​;
 ​index = 0​;
 ​repeats = 1​;
 advance​();
 }

 ​private​ ​void​ advance​()​ {
 repeats ​-=​ ​1;
 ​while​ ​(​hasNext() && repeats == 0​)​ {
 ​repeats = data[index]​;
 ​index += 1​;
 }
 }

 ​public​ ​boolean​ hasNext​()​ {
 ​return index < data.length​;
 }

 ​public​ ​int​ ​next​()​ {
 ​int prev = index​;
 advance​();
 ​return data[prev]​;
 }

 ​public​ ​void​ remove​()​ {
 ​throw​ ​new​ ​UnsupportedOperationException​();
 }
}

Generics

Easy Mode
Warm-up Question ​Why do we use generics?

Because casting is a pain! By using generics, we no longer have to cast objects within other
collections which results in better type safety.

Make This Generic ​Rewrite the ​Node​ class below to allow for generic types.

public​ ​class​ ​Node​ {
 ​Object​ first;
 ​Node​ ​rest;

 ​public​ ​Node​(​Object​ first​,​ ​Node​ ​rest​)​ {
 ​this​.​first ​=​ first;
 ​this​.​rest​ ​=​ ​rest;
 }
}

public class Node<T> {
 T first;
 Node<T> rest;

 public Node(T first, Node<T> rest) {
 this.first = first;
 this.rest = rest;
 }
}

Medium Mode
NumericSet​ Below is a snippet of ​NumericSet​. For the code below, answer the following
questions. As a hint, ​Number​ is the super class of ​Double​, ​Integer​, ​Float​, etc.

public​ ​class​ ​NumericSet​<​T ​extends​ ​Number​>​ ​extends​ ​HashSet​<​T​>​ {
 ​// implementation goes here
}

1) What does the ​extends​ keyword do here?

Forces all elements of ​NumericSet​ to have ​Number​ as a super class.

2) What kind of types can you place in a ​NumericSet​ instance? Be specific in terms of the
classes existing within the Java standard library.

Integer, Double, Float, Long, Short, Byte, BigInteger, BigDecimal, ...

3) Why is the generic type for ​HashSet​ ​<T>​ and not ​<T extends Number>​?

NumericSet​ already makes the generic type declaration ​<T extends Number>​. Any usage
of ​T​ after this refers to the same particular ​T​ that extends ​Number​.

Generic Binary Search Trees ​For the code below, answer the following questions.

class​ ​BinarySearchTree​<​T ​extends​ ​Comparable​<​T​>>​ ​implements​ ​Comparable​<​T​>​ {
 ​// implementation goes here
}

1) What kind of elements does an instance of ​BinarySearchTree​ hold?

Objects that implement ​Comparable​.

2) What method do all elements stored in a ​BinarySearchTree​ instance have in common?

int compareTo(T other)​.

3) Is the ​Comparable<T>​ in the generic declaration for ​BinarySearchTree​ in any way related
to the ​Comparable<T>​ implemented by the ​BinarySearchTree​ class?

No.

Hard Mode
Fill ​Suppose we've defined a ​fill​ method with the following declaration.

public​ ​static​ ​<​T​>​ ​void​ fill​(​List​<​? ​super​ T​>​ list, T x​)​ {
 ​// implementation goes here
}

1) What are the types for both arguments?

list​ is a ​List<? super T>​. ​x​ is of type ​T​.

2) What is the type that ​fill​ returns?

void​ return type. The list is mutated.

3) What can you say about the type of objects ​list​ holds?

list​ holds objects of type ​T​ or a super class of type ​T​.

4) Why didn’t the library designers just write this as ​static <T> void fill(List<T> list,
T x)​?

It's possible that we want to fill a ​List<Number>​ with ​Integers​. Declaring the ​list​ as
List<T>​ would eliminate this possibility.

Binary Search​ Suppose we've also defined a binary search method.

public​ ​static​ ​<​T​>​ ​int​ binarySearch​(
 List​<​? ​extends​ ​Comparable​<​? ​super​ T​>>​ list, T key​)​ {
 ​// implementation goes here
}

1) What are the types for both arguments?

List<? extends Comparable<? super T>>​ and ​T​.

2) What is the return type for this method?

int​, the index of the element.

3) What can you say about the type of objects ​list​ holds?

list​ holds objects implementing ​Comparable​. The ​Comparable​ type may be a super class
of the list's elements. For example, in a ​List<Integer>​, we want to be able to compare
those ​Integers​ with other ​Numbers​ like ​Floats​.

Asymptotics

Easy Mode
For the following code block, step through its execution and determine the tightest bound on its
runtime.

public​ ​static​ ​void​ easyMethod1​(​int​[]​ array​)​ {
 ​MultipleFunction​ mf ​=​ ​new​ ​MultipleFunction​(​4​);
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ array​.​length​();​ i ​+=​ ​1​)​ {
 mf​.​setArg​(​array​[​i​]);
 array​[​i​]​ ​=​ mf​.​apply​();
 }

}

// Let N = arr.length and suppose mf.apply() takes Theta(N) time.

easyMethod1​(​arr​);

Theta(N​2​)

public​ ​static​ ​void​ easyMethod2​(​int​[]​ array​,​ ​int​ low​,​ ​int​ high​)​ {
 if (low <= high) {

 if (array[low] == 0) {

 for​ ​(​int​ i ​=​ low​;​ i ​<​ high​;​ i ​+=​ ​1​)​ {
 ​System​.​out​.​println​(​array​[​i​]);
 }

 }

 easyMethod2​(​array​,​ low​,​ low ​+​ ​(​high ​-​ low​)​ ​/​ ​2​);
 easyMethod2​(​array​,​ low ​+​ ​(​high ​-​ low​)​ ​/​ ​2​,​ high​);
 }

}

// Let N = arr.length

easyMethod2​(​arr​,​ ​0​,​ N​);

O(N log N), Omega(N)

Medium Mode
For the following code block, step through its execution and determine the tightest bound on its
runtime.

public​ ​static​ ​void​ mediumMethod1​(​int​ n)​ {
 ​for​ ​(​int​ i ​=​ ​1​;​ i ​<​ n​;​ i ​*=​ ​2​)​ {
 ​int​ j ​=​ ​0​;
 ​while​ ​(​j ​<​ n​)​ {
 j ​+=​ ​1;
 }

 }

}

// Let N be some number

mediumMethod1​(​N​);

Theta(N log N)

public​ ​static​ ​void​ mediumMethod2​(​int​[]​ arr​)​ {
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ arr​.​length​;​ i ​+=​ ​1​)​ {
 ​int​ j ​=​ i ​+​ ​1;
 ​while​ ​(​j ​<​ arr​.​length​)​ {
 ​if​ ​(​arr​[​i​]​ ​==​ arr​[​j​])​ {
 ​return;
 }

 j ​+=​ ​1;
 }

 }

}

// Let N = arr.length

mediumMethod2​(​arr​);

O(N​2​), Omega(1)

Hard Mode

public​ ​static​ ​int​ hardMethod1​(​int​ n​)​ {
 ​return​ hardMethod1​(​n​,​ n​);
}

public​ ​static​ ​int​ hardMethod1​(​int​ x​,​ ​int​ n​)​ {
 ​if​ ​(​x ​==​ ​1​)​ {
 ​return​ x;
 ​}​ ​else​ {
 ​int​ sum ​=​ ​0;
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ n​;​ i ​+=​ ​1​)​ {
 sum ​+=​ hardMethod1​(​x ​-​ ​1​,​ n​);
 }

 ​return​ sum;
 }

}

// Let N be some number

hardMethod1​(​N​);

Theta(N​N-1​)

public​ ​static​ ​void​ bogosort​(​int​[]​ arr​)​ {
 ​if​ ​(!​isSorted​(​arr​))​ {
 shuffle​(​arr​);
 bogosort​(​arr​);
 }

}

// Let N = arr.length

// Suppose isSorted runs in O(N) time and shuffle also runs in O(N) time

// Assume each shuffle returned is unique!

int​[]​ arr = ​{​n​,​ n ​-​ ​1​,​ n ​-​ ​2​,​ ...​,​ ​2​,​ ​1​};
bogosort​(​arr​);

O(NN!), Omega(N): There are O(N!) unique permutations of N elements and each call takes
O(N) time.

Tree Structures

Easy Mode
Warm-up Question ​How do you define a tree?

A tree is acyclic and fully connected. Or, if there are N nodes, there are N - 1 edges.

Valid Trees​ For each of the following images state if they are valid tree structures.

Yes, No, Yes

Order Order Order

In-order ​D B A C H F I E G

Pre-order ​A B D C E F H I G

Post-order ​D B H I F G E C A

Medium Mode
Good Ole Amoeba​ For the next questions, consider the ​AmoebaFamily​ class definition below.

public class ​AmoebaFamily​ {
 ​public ​Amoeba ​root​;

 public​ ​static​ ​class​ ​Amoeba​ {
 ​public​ ​String​ name​;
 ​public​ ​Amoeba​ parent​;
 ​public​ ​List​<​Amoeba​>​ children​;

 ​public​ ​Amoeba​(​String​ name​,​ ​Amoeba​ parent​)​ {
 ​this​.​name ​=​ name;
 ​this​.​parent ​=​ parent;
 ​this​.children ​=​ ​new​ ​ArrayList​<​Amoeba​>();
 }
 }
}

Amoeba Search​ Define ​AmoebaFamily::findMoeba​, a method that will search for an ​Amoeba
with the given ​name​. Assume that the ​root​, ​name​, and every child of an ​Amoeba​ are not null.

/** Returns true if this AmoebaFamily has an Amoeba with NAME as name. */
public​ ​boolean​ findMoeba​(​String​ name​)​ {
 ​return findMoebaHelper(this.root, name);
}

private boolean findMoebaHelper(Ameoba node, String name) {
 if (name.equals(node.name)) {
 return true;
 }
 for (Amoeba child : node.children) {
 if (findMoebaHelper(child, name)) {
 return true;
 }
 }
 return false;
}

Amoeba Sum​ Let's say each ​Amoeba​ object contains an additional int instance variable, ​value​.
Write a method that will determine the sum of all values in an ​AmoebaFamily​. Assume that the
root​, ​name​, and every child of an ​Amoeba​ are not null.

/** Returns the sum of all Amoeba values in this AmoebaFamily. */
public​ ​int​ sumoeba​()​ {
 ​return sumoebaHelper(this.root);
}

private int sumoebaHelper(Amoeba node) {
 int value = node.value;
 for (Amoeba child : node.children) {
 value += sumoebaHelper(child);
 }
 return value;
}

Hard Mode
Amoeba Path​ Implement ​pathMoeba​ which returns the length of the shortest path between two
Amoeba​ in an ​AmoebaFamily​. ​Amoeba​ are identified by their ​name​. The ​AmoebaFamily​ is
guaranteed to contain both ​Amoeba​.

public int pathMoeba(Ameoba a, Amoeba b) {
 if (a.name.equals(b.name)) {
 return 0;
 }
 Amoeba temp = b.parent;
 for (int dist = 1; temp != null; dist += 1) {
 if (a.name.equals(temp.name)) {
 return dist;
 }
 temp = temp.parent;
 }
 return pathMoeba(a.parent, b) + 1;
}

Binary Search Trees

Easy Mode
Define That BST Though

1) List the two properties that define a binary search tree.

Each node has at most two children, with the left child having a value less than the node and
the right child having a value greater than the node.

2) For the purpose of this class, do we care about inserting two elements into a BST of the
same value?

No.

Do BST Things​ Given the following BST, perform the following operations.

1) Insert 72

2) Insert 88

3) Insert 89

4) Remove 84 (promote right subtree)

5) Remove 3

Medium Mode
Symbol Tree​ Consider the binary search tree below. Each symbol has an underlying meaning.
For example the root node may represent “snowman” while its immediate left child may
represent “overthrow the capitalist regime”.

1) Given the above symbols, fill out the following tree such that it is a valid BST on the

underlying meaning of each symbol.

2) For each of the insertion operations below, use the information given to "insert" the element
into the ​printed example tree above​ by drawing the object (and any needed links) onto the
tree. Assume the objects are inserted in the order shown below. You should ​only​ add links
and nodes for the new objects. If there is not enough information to determine where the
object should be inserted into the tree, circle “not enough information”.

Hard Mode
Linked Lists Are Back​ Convert a given Binary Search Tree into a sorted linked list.

/** Returns the head of a linked list created from BST rooted at NODE. */
public​ ​Node​ toLinkedList​(​TreeNode​ node​)​ {
 ​node = helper(node)​;
 ​if​ ​(​node ​!=​ ​null​)​ {
 ​while​ ​(​node.left != null​)​ {
 ​node = node.left​;
 }
 }
 ​return​ node;
}

/** A helper method. */
private​ ​Node​ helper​(​TreeNode​ node​)​ {
 ​if​ ​(​node == null​)​ {
 ​return node​;
 }
 ​if​ ​(​node.left != null​)​ {
 ​TreeNode​ left ​=​ helper​(​node​.​left​);
 ​while​ ​(​left.right != null​)​ {
 ​left = left.right​;
 }
 ​left.right = node​;
 ​node.left = left​;
 }
 ​if​ ​(​node.right != null​)​ {
 ​TreeNode​ right ​=​ helper​(​node​.​right​);
 ​while​ ​(​right.left != null​)​ {
 ​right = right.left​;
 }
 ​right.left = node​;
 ​node.right = right​;
 }
 ​return​ node;
}

Balanced Search Trees

Easy Mode
Warm-up Questions

1) How do we define a Red-Black Tree?

The root node is black. Every red node has at most two black children. Every path from a
node its descendent leaf has the same number of black nodes.

2) How do we define a 2-3-4 Tree?

A search tree that has at most 3 keys per node and any non-leaf node has one more child
than number of keys.

3) Red Black Trees are to 2-3-4 Trees as Left Leaning Red Black Trees are to what?

2-3 Trees.

4) What is the difference between 2-3-4 Trees and 2-3 Trees?

2-3 Trees do not have 4 nodes.

Fill In the Table
Give a tight asymptotic runtime bound for each cell in the table below.

 Binary Search Tree Red-Black Tree

Best Worst Best Worst

Find Theta(1) Theta(N) Theta(1) Theta(log N)

Insert Theta(1) Theta(N) Theta(log N) Theta(log N)

Delete Theta(1) Theta(N) Theta(1) Theta(log N)

Medium Mode
Rotations For Days​ Perform the following operations in order.

1) Rotate 3 left
2) Rotate 6 left
3) Rotate 2 right
4) Rotate 34 right

Add it To Me ​Perform the listed operation for the following Left Leaning Red-Black Tree.

Conversion Times ​For the following red-black tree, perform the following operations (shaded
nodes are black)

1) Draw the corresponding 2-3-4 Tree

2) Draw a different Red-Black Tree that corresponds to that 2-3-4 Tree

Hard Mode
Grab Bag Questions

1) If a certain 2-3-4 Tree has height ​h​ meaning it has ​h+1 ​levels, then what is the maximum

and minimum height for the corresponding Red-Black Tree? Do not use asymptotics.

Max = 2h + 1, Min = h

2) Show two 2-3-4 Trees containing values 1-15 having both minimum and maximum depth
respectively.

Hashbrowns

Easy Mode
Get Ready For Hashbrowns

1) What three tenets must a good hashcode follow?

Deterministic, good distribution, and the ​equals()​ contract: two objects equal to each other
must have the same ​hashCode()​.

2) What is the default hash java uses for any object?

Return the memory address.

3) When defining your own hash function for Java, what two methods must you override and
why?

Both ​equals()​ and ​hashCode()​.

4) Suppose the hash code for ​String​ simply returns a numeric representation of the first letter.
Why is this a bad hash code? Give a better hashing regime.

Because any dataset whose words begin with the same letter will all hash to the same
bucket.

5) Suppose you have a hash table with a perfect hashing function. What is the runtime for N
insertions? What if the hash function is terrible?

O(N) with a good hash function. O(N​2​) with a poor has function as the hash table will need to
iterate down the entries to the end of the chain before inserting.

StringSet​ The ​StringSet​ class defines a set for strings. The set is backed by a hash table that
resolves collisions by chaining. Implement ​put​ and ​resize​.

public​ ​class​ ​StringSet​ {
 ​/** The maximum load factor before resizing. */
 ​private​ ​static​ ​final​ ​double​ MAX_LOAD_FACTOR ​=​ ​2;
 ​/** An array of hash table entries. */
 ​private​ ​Entry​[]​ entries;
 ​/** The number of elements held in the set. */
 ​private​ ​int​ size;
 ​/** The load factor of the hash map. */
 ​private​ ​double​ load;

 ​class​ ​Entry​ {
 ​int​ key; ​String​ value; ​Entry​ ​next;

 ​Entry​(​int​ key​,​ ​String​ value​,​ ​Entry​ ​next​)​ {
 ​this​.​key ​=​ key;
 ​this​.​value ​=​ value;
 ​this​.​next​ ​=​ ​next;
 }

 }

 ​/** Initializes a new StringSet with an initial size of SIZE. */
 ​public​ ​StringSet​(​int​ size​)​ {
 ​this​.​entries ​=​ ​new​ ​Entry​[​size​];
 ​this​.​size ​=​ ​0;
 }

 ​/** Returns true if e exists in the set, adding e. Else
 * returns false. */

 ​public​ ​boolean​ add​(​String​ e​)​ {
 ​return​ put​(​e​.​hashCode​(),​ e​);
 }

 ​/** Returns true if e is contained in the set. */
 ​public​ ​boolean​ contains​(​String​ e​)​ {
 ​return​ add​(​e​);
 }

 /** Returns true if the key, value pair does not already exist

 * in the hashmap and then places it in the map. */

 ​private​ ​boolean​ put​(​int​ key​,​ ​String​ value​)​ {
 int index = key % entries.length;

 Entry curr = entries[index];

 if (curr == null) {

 entries[index] = new Entry(key, value, null);

 } else {

 while (curr.next != null) {

 if (key.equals(curr.key) && value.equals(curr.value)) {

 return false;

 } else if (key.equals(curr.key)) {

 curr.value = value;

 return true;

 }

 curr = curr.next;

 }

 curr.next = new Entry(key, value, null);

 size += 1;

 load = size / entries.length;

 if (load >= MAX_LOAD_FACTOR) {

 resize();

 }

 }

 return true;

 }

 ​/** If the load factor of the hash table is greater than
 * MAX_LOAD_FACTOR then this method will double the size

 * of the map. */

 ​private​ ​void​ resize​()​ {
 Entry[] old = entries;

 entries = new Entry[old.length * 2];

 load = 0;

 for (int i = 0; i < old.length; i += 1) {

 for (Entry curr = old[i]; curr != null; curr = curr.next) {

 put(curr.key, curr.value);

 }

 }

 }

}

Medium Mode
Hashing Strings in Java​ The hash function for Java’s ​String​ class is as follows.

public​ ​int​ hashCode​()​ {
 ​int​ h ​=​ ​0;
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ length​();​ i ​+=​ ​1​)​ {
 h ​=​ ​31​ ​*​ h ​+​ charAt​(​i​);
 }
}

1) Given a string of length ​L​ and a ​HashSet<String>​ containing ​N​ strings, give the worst and

best-case running times of inserting a ​String​ into the ​HashSet​.

Theta(NL) in the worst case, Theta(L) in the best case. If we treat L as a constant, then
Theta(1).

2) In Java, ​HashSet​ always ensures the size of the underlying array is some power of 2. If this
were not the case, the method above could potentially be a very poor hash function. Give a
number ​M​ such that setting the ​HashSet's​ array to size ​M​ would break the method above.

Choose M = 31.

Performance Hashing​ Suppose a class has two hash functions ​hashCode1()​ and
hashCode2()​ which both are good hash functions. For each of the hash functions below, state if
it is a good regime. If not, provide a brief explanation why.

1) hashCode1()​ if ​hashCode2()​ returns 0, else ​hashCode2()​.

Yes. Both hash codes are assumed to be good and we'll use at most one at a time.

2) Generate a random number. If that number is even, then ​hashCode1()​, else use
hashCode2()​.

No, this is non-deterministic.

3) -hashCode1()​ if ​hashCode1()​ is even else use ​hashCode1()​.

Yes, values are distributed as evenly as ​hashCode1()​, just differently.

Heaps and Priority Queues

Easy Mode
Insert Into Heaps​ The heap below holds integers with each integer’s initial priority set to its
value. Perform the following operations in order on the heap.

1) Insert 6

2) Remove-min

3) Insert 1

4) Insert 4

5) Change-priority 13 to 2

6) Remove min

What is the array representation of the final heap?

[2, 4, 8, 6, 5, 10, 9, 14, 7]

Runtime Funtime​ Fill in the table with the correct runtime bounds for a Min Binary Heap.

Operation Get-min Remove-min Insert Change-priority

Best case Theta(1) Theta(1) Theta(1) Theta(1)

Worst case Theta(1) Theta(log N) Theta(log N) Theta(log N)

Medium Mode
Evil Alan and Evil Sarah are Up To No Good
You’re walking down the street one day and all of a sudden, Evil Alan jumps from a bush and
challenges you to quickly implement an integer max-heap.

You, being the clever CS 61B student you are, say to yourself, “Ah ha! I’ll just use my min-heap
implementation as a template to write ​MaxHeap.java​.” But before you can begin coding, Evil
Sarah deletes your min-heap implementation.

However, you notice that you still have the ​MinHeap.class​ file; could you use it to complete the
challenge? You can still use methods from min-heap but you cannot modify them. If so,
describe your approach. If not, explain why it is impossible.

Write a wrapper class that uses the min-heap by inserting the negative of each element. When
popping off the heap, return the negation of the result which restores the original value.

Yet Another Runtime Question​ What is the best and worst case runtime for this block of code.

public​ ​static​ ​void​ foobar​(​PriorityQueue​<​Integer​>​ heap​,​ ​int​[]​ ​in​)​ {
 ​int​ n ​=​ ​in​.​length;
 ​for​ ​(​x ​:​ ​in​)​ {
 heap​.​add​(​x)
 }
}

Theta(N) in the best case, Theta(N log N) in the worst case.

Hard Mode
More Heap Questions​ Answer the following questions about heaps.

1) What are the minimum and maximum number of elements in a heap of height h?

Assuming a leaf node is of height 1, the min is 2​h-1​ when there's only one element in the
last row while the max is 2​h​ - 1 when the last row is completely full.

2) Is it true that for any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree?

Yes because that follows from the definition of a max-heap.

3) Is an array in sorted ascending order a min-heap?

Yes. Consider any value v at index i. Since the array is sorted ascending, the value at 2i
and 2i + 1 must be greater than v which maintains the min-heap property for any i.

4) Where in a max-heap might the smallest element reside, assuming all elements are
distinct?

In a max-heap, the min element must be a leaf.

5) Given an array representation of a binary heap, where do all the leaf nodes of the heap
reside?

The leaf nodes in the heap reside in the second half of the array since heaps are
complete binary trees.

Merging Sorted Lists​ Give an O(N log K) algorithm to merge K sorted lists into one sorted list,
where N is the total number of elements in all input lists.

Create a min-heap of size K. For each of the K sorted lists, add the minimum element at the
front of the list into the heap remembering from which list each element came from. Remove the
min from the heap and insert it into the result, and replenish the heap with the next element from
the sorted list. Each heap insertion and bubbling takes O(log K) time and we perform this
operation N times, once for each element, yielding an overall runtime in O(N log K).

K-ary Heaps​ A K-ary heap is like a binary heap, but non-leaf nodes have K children instead of 2
children. Answer the following questions.

1) How would you represent a k-ary heap in an array?

Use the same indexing scheme as in a binary heap, but let the children of the value at
index n be given by the formula Kn + i.

2) What is the height of a k-ary heap of N elements in terms of N and K?

height = ceil(log​K​ N)

3) Give an efficient algorithm to insert an element into the heap and provide a runtime
bound in terms of K and N.

With a bubble-up strategy, the runtime is in O(log​K​ N) time since each node has only up
to 1 parent. With a bubble-down strategy, we need to consider up to K possible children
which results in O(K log​K​ N) time since we spend Theta(K) time scanning across children
and need to examine up to O(log​K​ N) levels.

