

Midterm 2 Review Document
CS 61B Spring 2018

Antares Chen + Kevin Lin

Introduction
Let me preface this packet with the following statement: this packet is a monster. Don’t even
think FOR A SECOND that it would make sense to sit down and do all of it in one go. The
purpose of this packet is to give you a compendium of targeted supplementary problems ranked
by difficulty.

Like the first document, it reflects all material that you will have already seen in labs and lecture.
Do not use this as a “be all end all” guide! It is still highly recommended that you review
previous and external course material.

For example, you should still do many practice midterms from previous semesters both CS
61BL and CS 61B. Use the midterms a heuristic for your knowledge of the material, then use
the lab guides and textbook to relearn the material.

There are still three modes: (easy) which represents basic understanding which you should
achieve after doing the lab, (medium) which consists of midterm difficulty level problems, and
(hard) which has problems not meant to be trivially solvable!

REMEMBER if you’re feeling down about things, take a step back and just breathe. Maybe take
a walk, buy a soda and stress cook some turkey soup (trust me it’s actually really cathartic). No
matter what believe in yourself, and if you don’t do that then at least believe in me who believes
in you.

Introduction

Iterating Collections
Easy Mode
Medium Mode
Hard Mode

Generics
Easy Mode
Medium Mode
Hard Mode

Asymptotics
Easy Mode
Medium Mode
Hard Mode

Tree Structures

Easy Mode
Medium Mode
Hard Mode

Binary Search Trees
Easy Mode
Medium Mode
Hard Mode

Balanced Search Trees
Easy Mode
Medium Mode
Hard Mode

Hashbrowns
Easy Mode
Medium Mode

Heaps and Priority Queues
Easy Mode
Medium Mode
Hard Mode

Iterating Collections

Easy Mode
Warm-up Questions

1) How do you make an object iterable? What are the three methods for iterators? What is the

interface that you need to implement?

2) It’s bad for hasNext() to change the state of the iterator. How could hasNext() change the
iterators state and why is it bad?

3) Why is Collection an interface?

Stack Times Some of the operations in the Collection interface can be implemented
generally without knowledge of the underlying Collection mechanics. To make it simpler, we
make an abstract class that implements some of these functionalities.

public abstract class SimpleCollection<E> implements Collection<E> {

 /** The number of elements in this SimpleCollection. */
 protected int size;

 public SimpleCollection() {
 size = 0;
 }

 /** Returns true if ELEM was added. */
 public abstract boolean add(E elem);

 /** Returns true if removing ELEM changed the collection. */
 public abstract boolean remove(E elem);

 /** Returns the size of this collection. */
 public int size() {
 return size;
 }

 /** Returns true if all elements in C were added. */
 public boolean addAll(Collection<? extends E> c) {
 boolean added = true;
 for (int i = 0; i < c.size(); i += 1) {
 added = added && add(c.get(i));
 }
 return added;
 }

 /** Returns true if the collection was changed. */
 public boolean removeAll(Collection<?> c) {
 boolean removed = false;
 for (int i = 0; i < c.size(); i += 1) {
 removed = removed || remove(c.get(i));
 }
 return removed;
 }

 // some more methods that I'm too lazy to write
}

Given this implementation of SimpleCollection, you are now to implement a Stack that is
backed by an Array. Remember that a Stack only allows for adds and removes from the top of
the stack. If remove is called with an element not at the top of the stack, you may throw an
IllegalArgumentException.

public class ArrayStack<E> extends SimpleCollection<E> {
 // some code may go here...

}

Medium Mode
ImageIterator We can represent an image as a 2D array of Color objects (check the javadoc if
you’re interested). Now suppose we wish to sequentially process the image pixel by pixel, row
by row. Write an ImageIterator that does just that.

public class ImageIterator implements Iterator<Color> {
 Color[][] image;
 int currX;
 int currY;

 public ImageIterator(Color[][] image) {
 _____________________________________;
 currX = _____________________________;
 currY = _____________________________;
 }

 public void hasNext() {
 if (__________________ || __________________) {
 return false;
 }
 return __________________ && __________________;
 }

 public Color next() {
 _____________________________________;
 currY += (____________) / ____________;
 currX = (____________) % ____________;
 _____________________________________;
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

Hard Mode
Repeaterator The Repeaterator is an iterator that iterates through an int array, repeating each
element the value number of times. A Repeaterator for [1, 2, 3] would return the sequence
1, 2, 2, 3, 3, 3. Fill out the following implementation for Repeaterator. Assume that the
given array only holds non-negative numbers.

public class Repeaterator implements Iterator<Integer> {

 private int[] data;
 private int index;
 private int repeats;

 public Repeaterator(int[] array) {
 _____________________________________;
 _____________________________________;
 _____________________________________;
 advance();
 }

 private void advance() {
 repeats -= 1;
 while (____________________________) {
 _________________________________;
 _________________________________;
 }
 }

 public boolean hasNext() {
 _____________________________________;
 }

 public int next() {
 _____________________________________;
 advance();
 _____________________________________;
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

Generics

Easy Mode
Warm-up Question Why do we use generics?

Make This Generic Rewrite the Node class below to allow for generic types.

public class Node {
 Object first;
 Node rest;

 public Node(Object first, Node rest) {
 this.first = first;
 this.rest = rest;
 }
}

Medium Mode
NumericSet Below is a snippet of NumericSet. For the code below, answer the following
questions. As a hint, Number is the super class of Double, Integer, Float, etc.

public class NumericSet<T extends Number> extends HashSet<T> {
 // implementation goes here
}

1) What does the extends keyword do here?

2) What kind of types can you place in a NumericSet instance? Be specific in terms of the
classes existing within the Java standard library.

3) Why is the generic type for HashSet <T> and not <T extends Number>?

Generic Binary Search Trees For the code below, answer the following questions.

class BinarySearchTree<T extends Comparable<T>> implements Comparable<T> {
 // implementation goes here
}

1) What kind of elements does an instance of BinarySearchTree hold?

2) What method do all elements stored in a BinarySearchTree instance have in common?

3) Is the Comparable<T> in the generic declaration for BinarySearchTree in any way related
to the Comparable<T> implemented by the BinarySearchTree class?

Hard Mode
Fill Suppose we've defined a fill method with the following declaration.

public static <T> void fill(List<? super T> list, T x) {
 // implementation goes here
}

1) What are the types for both arguments?

2) What is the type that fill returns?

3) What can you say about the type of objects list holds?

4) Why didn’t the library designers just write this as static <T> void fill(List<T> list,
T x)?

Binary Search Suppose we've also defined a binary search method.

public static <T> int binarySearch(
 List<? extends Comparable<? super T>> list, T key) {
 // implementation goes here
}

1) What are the types for both arguments?

2) What is the return type for this method?

3) What can you say about the type of objects list holds?

Asymptotics

Easy Mode
For the following code block, step through its execution and determine the tightest bound on its
runtime.

public static void easyMethod1(int[] array) {
 MultipleFunction mf = new MultipleFunction(4);
 for (int i = 0; i < array.length(); i += 1) {
 mf.setArg(array[i]);
 array[i] = mf.apply();
 }

}

// Let N = arr.length and suppose mf.apply() takes Theta(N) time.

easyMethod1(arr);

public static void easyMethod2(int[] array, int low, int high) {
 if (low <= high) {

 if (array[low] == 0) {

 for (int i = low; i < high; i += 1) {
 System.out.println(array[i]);
 }

 }

 easyMethod2(array, low, low + (high - low) / 2);
 easyMethod2(array, low + (high - low) / 2, high);
 }

}

// Let N = arr.length

easyMethod2(arr, 0, N);

Medium Mode
For the following code block, step through its execution and determine the tightest bound on its
runtime.

public static void mediumMethod1(int n) {
 for (int i = 1; i < n; i *= 2) {
 int j = 0;
 while (j < n) {
 j += 1;
 }

 }

}

// Let N be some number

mediumMethod1(N);

public static void mediumMethod2(int[] arr) {
 for (int i = 0; i < arr.length; i += 1) {
 int j = i + 1;
 while (j < arr.length) {
 if (arr[i] == arr[j]) {
 return;
 }

 j += 1;
 }

 }

}

// Let N = arr.length

mediumMethod2(arr);

Hard Mode

public static int hardMethod1(int n) {
 return hardMethod1(n, n);
}

public static int hardMethod1(int x, int n) {
 if (x == 1) {
 return x;
 } else {
 int sum = 0;
 for (int i = 0; i < n; i += 1) {
 sum += hardMethod1(x - 1, n);
 }

 return sum;
 }

}

// Let N be some number

hardMethod1(N);

public static void bogosort(int[] arr) {
 if (!isSorted(arr)) {
 shuffle(arr);
 bogosort(arr);
 }

}

// Let N = arr.length

// Suppose isSorted runs in O(N) time and shuffle also runs in O(N) time

// Assume each shuffle returned is unique!

int[] arr = {n, n - 1, n - 2, ..., 2, 1};
bogosort(arr);

Tree Structures

Easy Mode
Warm-up Question How do you define a tree?

Valid Trees For each of the following images state if they are valid tree structures.

Order Order Order

In-order

Pre-order

Post-order

Medium Mode
Good Ole Amoeba For the next questions, consider the AmoebaFamily class definition below.

public class AmoebaFamily {
 public Amoeba root;

 public static class Amoeba {
 public String name;
 public Amoeba parent;
 public List<Amoeba> children;

 public Amoeba(String name, Amoeba parent) {
 this.name = name;
 this.parent = parent;
 this.children = new ArrayList<Amoeba>();
 }
 }
}

Amoeba Search Define AmoebaFamily::findMoeba, a method that will search for an Amoeba
with the given name. Assume that the root, name, and every child of an Amoeba are not null.

/** Returns true if this AmoebaFamily has an Amoeba with NAME as name. */
public boolean findMoeba(String name) {

}

Amoeba Sum Let's say each Amoeba object contains an additional int instance variable, value.
Write a method that will determine the sum of all values in an AmoebaFamily. Assume that the
root, name, and every child of an Amoeba are not null.

/** Returns the sum of all Amoeba values in this AmoebaFamily. */
public int sumoeba() {

}

Hard Mode
Amoeba Path Implement pathMoeba which returns the length of the shortest path between two
Amoeba in an AmoebaFamily. Amoeba are identified by their name. The AmoebaFamily is
guaranteed to contain both Amoeba.

// go at it friends

Binary Search Trees

Easy Mode
Define That BST Though

1) List the two properties that define a binary search tree.

2) For the purpose of this class, do we care about inserting two elements into a BST of the
same value?

Do BST Things Given the following BST, perform the following operations.

1) Insert 72

2) Insert 88

3) Insert 89

4) Remove 84 (promote right subtree)

5) Remove 3

Medium Mode
Symbol Tree Consider the binary search tree below. Each symbol has an underlying meaning.
For example the root node may represent “snowman” while its immediate left child may
represent “overthrow the capitalist regime”.

1) Given the above symbols, fill out the following tree such that it is a valid BST on the

underlying meaning of each symbol.

2) For each of the insertion operations below, use the information given to "insert" the element

into the printed example tree above by drawing the object (and any needed links) onto the
tree. Assume the objects are inserted in the order shown below. You should only add links
and nodes for the new objects. If there is not enough information to determine where the
object should be inserted into the tree, circle “not enough information”.

Hard Mode
Linked Lists Are Back Convert a given Binary Search Tree into a sorted linked list.

/** Returns the head of a linked list created from BST rooted at NODE. */
public Node toLinkedList(TreeNode node) {
 ___;
 if (node != null) {
 while (_______________________) {
 _______________________________________;
 }
 }
 return node;
}

/** A helper method. */
private Node helper(TreeNode node) {
 if (__________________) {
 ___;
 }
 if (__________________) {
 TreeNode left = helper(node.left);
 while (_______________________) {
 _______________________________________;
 }
 ___;
 ___;
 }
 if (__________________) {
 TreeNode right = helper(node.right);
 while (_______________________) {
 _______________________________________;
 }
 ___;
 ___;
 }
 return node;
}

Balanced Search Trees

Easy Mode
Warm-up Questions

1) How do we define a Red-Black Tree?

2) How do we define a 2-3-4 Tree?

3) Red Black Trees are to 2-3-4 Trees as Left Leaning Red Black Trees are to what?

4) What is the difference between 2-3-4 Trees and 2-3 Trees?

Fill In the Table
Give a tight asymptotic runtime bound for each cell in the table below.

 Binary Search Tree Red-Black Tree

Best Worst Best Worst

Find

Insert

Delete

Medium Mode
Rotations For Days Perform the following operations in order.

1) Rotate 3 left

2) Rotate 6 left

3) Rotate 2 right

4) Rotate 34 right

Add it To Me Perform the listed operation for the following Left Leaning Red-Black Tree.

1) Add 60

2) Add 11

3) Add 13

4) Add 2

Conversion Times For the following red-black tree, perform the following operations (shaded
nodes are black)

1) Draw the corresponding 2-3-4 Tree

2) Draw a different Red-Black Tree that corresponds to that 2-3-4 Tree

Hard Mode
Grab Bag Questions

1) If a certain 2-3-4 Tree has height h meaning it has h+1 levels, then what is the maximum

and minimum height for the corresponding Red-Black Tree? Do not use asymptotics.

2) Show two 2-3-4 Trees containing values 1-15 having both minimum and maximum depth
respectively.

Hashbrowns

Easy Mode
Get Ready For Hashbrowns

1) What three tenets must a good hashcode follow?

2) What is the default hash java uses for any object?

3) When defining your own hash function for Java, what two methods must you override and
why?

4) Suppose the hash code for String simply returns a numeric representation of the first letter.
Why is this a bad hash code? Give a better hashing regime.

5) Suppose you have a hash table with a perfect hashing function. What is the runtime for N
insertions? What if the hash function is terrible?

StringSet The StringSet class defines a set for strings. The set is backed by a hash table that
resolves collisions by chaining. Implement put and resize.

public class StringSet {
 /** The maximum load factor before resizing. */
 private static final double MAX_LOAD_FACTOR = 2;
 /** An array of hash table entries. */
 private Entry[] entries;
 /** The number of elements held in the set. */
 private int size;
 /** The load factor of the hash map. */
 private double load;

 class Entry {
 int key; String value; Entry next;

 Entry(int key, String value, Entry next) {
 this.key = key;
 this.value = value;
 this.next = next;
 }

 }

 /** Initializes a new StringSet with an initial size of SIZE. */
 public StringSet(int size) {
 this.entries = new Entry[size];
 this.size = 0;
 }

 /** Returns true if e exists in the set, adding e. Else
 * returns false. */

 public boolean add(String e) {
 return put(e.hashCode(), e);
 }

 /** Returns true if e is contained in the set. */
 public boolean contains(String e) {
 return add(e);
 }

 /** Returns true if the key, value pair does not already exist

 * in the hashmap and then places it in the map. */

 private boolean put(int key, String value) {

 }

 /** If the load factor of the hash table is greater than
 * MAX_LOAD_FACTOR then this method will double the size

 * of the map. */

 private void resize() {

 }

}

Medium Mode
Hashing Strings in Java The hash function for Java’s String class is as follows.

public int hashCode() {
 int h = 0;
 for (int i = 0; i < length(); i += 1) {
 h = 31 * h + charAt(i);
 }
}

1) Given a string of length L and a HashSet<String> containing N strings, give the worst and

best-case running times of inserting a String into the HashSet.

2) In Java, HashSet always ensures the size of the underlying array is some power of 2. If this

were not the case, the method above could potentially be a very poor hash function. Give a
number M such that setting the HashSet's array to size M would break the method above.

Performance Hashing Suppose a class has two hash functions hashCode1() and
hashCode2() which both are good hash functions. For each of the hash functions below, state if
it is a good regime. If not, provide a brief explanation why.

1) hashCode1() if hashCode2() returns 0, else hashCode2().

2) Generate a random number. If that number is even, then hashCode1(), else use

hashCode2().

3) -hashCode1() if hashCode1() is even else use hashCode1().

Heaps and Priority Queues

Easy Mode
Insert Into Heaps The heap below holds integers with each integer’s initial priority set to its
value. Perform the following operations in order on the heap.

1) Insert 6

2) Remove-min

3) Insert 1

4) Insert 4

5) Change-priority 13 to 2

6) Remove min

What is the array representation of the final heap?

Runtime Funtime Fill in the table with the correct runtime bounds for a Min Binary Heap.

Operation Get-min Remove-min Insert Change-priority

Best case

Worst case

Medium Mode
Evil Alan and Evil Sarah are Up To No Good
You’re walking down the street one day and all of a sudden, Evil Alan jumps from a bush and
challenges you to quickly implement an integer max-heap.

You, being the clever CS 61B student you are, say to yourself, “Ah ha! I’ll just use my min-heap
implementation as a template to write MaxHeap.java.” But before you can begin coding, Evil
Sarah deletes your min-heap implementation.

However, you notice that you still have the MinHeap.class file; could you use it to complete the
challenge? You can still use methods from min-heap but you cannot modify them. If so,
describe your approach. If not, explain why it is impossible.

Yet Another Runtime Question What is the best and worst case runtime for this block of code.

public static void foobar(PriorityQueue<Integer> heap, int[] in) {
 int n = in.length;
 for (x : in) {
 heap.add(x)
 }
}

Hard Mode
More Heap Questions Answer the following questions about heaps.

1) What are the minimum and maximum number of elements in a heap of height h?

2) Is it true that for any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree?

3) Is an array in sorted ascending order a min-heap?

4) Where in a max-heap might the smallest element reside, assuming all elements are
distinct?

5) Given an array representation of a binary heap, where do all the leaf nodes of the heap
reside?

Merging Sorted Lists Give an O(N log K) algorithm to merge K sorted lists into one sorted list,
where N is the total number of elements in all input lists.

K-ary Heaps A K-ary heap is like a binary heap, but non-leaf nodes have K children instead of 2
children. Answer the following questions.

1) How would you represent a k-ary heap in an array?

2) What is the height of a k-ary heap of N elements in terms of N and K?

3) Give an efficient algorithm to insert an element into the heap and provide a runtime
bound in terms of K and N.

