CS 61B Midterm 1 Guerrilla Section
Spring 2018 February 10, 2018

Instructions

Form a small group. Start on the first problem. Check off with a helper or discuss
your solution process with another group once everyone understands how to solve

the first problem and then repeat for the second problem ...

You may not move to the next problem until you check off or discuss with another
group and everyone understands why the solution is what it is. You may use any
course resources at your disposal: the purpose of this review session is to have

everyone learning together as a group.

1 Take a Knap, hit the sack

Fix the bugs in Knapsack so that main prints out Doge coin : 100.45.

class Knapsack {
public String thing;
public String amount;

public Knapsack(String str, double amount) {
String thing = str;
amount = amount;

public Knapsack(String str) {
Knapsack(str, 100.45);

public static void main(String[] args) {
Knapsack sack = new Knapsack("Doge coin");

"

System.out.println(thing + " : + amount);



2 Midterm 1 Guerrilla Section
2 I Like Cats

Toby wants to rule the world with an army of cats. Each cat may or may not have
one parent, and may or may not have ‘kitties’. Each cat that has a parent is a
‘kitty’ of that parent. But after implementing copyCat, which creates a copy of a

cat and its descendants, he realizes the function contains a bug.

public class Cat {
private Cat parent;
private ArraylList<Cat> kitties;
private String name;

public Cat(Cat parent, String name) {
this.name = name;
this.kitties = new ArrayList<Cat>();
this.parent = parent;

public Cat copyCat() {
Cat copy = new Cat(this.parent, this.name);
for (int i = 0; i < this.kitties.size(); i += 1) {
copy.kitties.add(this.kitties.get(i).copyCat());
3

return copy;

}

What’s wrong with his Cat class? Drawing a box and pointer diagram may help!



3

Midterm 1 Guerrilla Section 3

Some Sort of Interface

Suppose we’d like to implement the SortedList interface.

public interface SortedlList {

/* Return the element at index i, the ith (@-indexed) smallest element.

int get(int i);

/* Remove the element at index i, the ith (0-indexed) smallest element.

int remove(int i);

/* Insert an element into the SortedList, maintaining sortedness. */
void insert(int elem);

/* Return the size of the SortedList. */
int size();

Suppose we’d like to optimize the speed of SortedList::get. Should we im-
plement SortedList with a linked list or an internal array?

Implement the default method, merge, which takes another SortedList and
merges the other values into the current SortedList.

default void merge(SortedList other) {

Suppose we’d like to merge using only a constant amount of additional memory.
Should we implement SortedList with a linked list or an internal array?

Implement the default method, negate, which destructively negates all the
values in the SortedList.

default void negate() {

*/

*/



4 Midterm 1 Guerrilla Section
4 Arrayana Grande

After executing the code, what are the values of Foo in xx and yy?

public class Foo {

2 public int x, y;

3

4 public static void main(String[] args) {

5 int N = 3;

6 Foo[] xx = new Foo[N], yy = new Foo[N];

7 for (int i = @; i < N; i++) {

8 Foo f = new Foo();

9 f.x =1i; f.y = i;

10 xx[i] = f;

1 yy[il = f;

12 }

13 for (int i = 0; i <N; i++) {

14 xx[i].y *= 2;

15 yy[il.x *= 3;

16 }

17 }

18}
(a) xx[@] (d) yylo]
(b) xx[1] (e) yy[1]
(c) xx[2] (f) yy[2]

5 Just another ﬁencﬂy. ..

What is the output after running the main method in the Ghoul class?

1 public class Monster {

2 public String noise = "blargh";

3 public static int spookFactor = 5;

4

5 public Monster() {

6 System.out.println("Muhahaha!!!");

7 3

8

9 public void spook(Monster m) {

10 System.out.println("I go " + noise);
il }

12

13 public void spook(Ghoul g) {

14 System.out.println("I am " + spookFactor + " spooky.");
15 }



20

21

22

23

24

25

26

27

28

29

Midterm 1 Guerrilla Section

public class Ghoul extends Monster {
public Ghoul() {
System.out.println("I am a ghoul");

public void spook(Ghoul g) {
System.out.println("I'm so ghoul");
((Monster) g).spook(g);

public void haunt() {
Monster m = this;
System.out.println(noise);
m.spook(this);

public static void main(String[] args) {
Monster m = new Monster();
m. spook(m) ;

Monster g = new Ghoul();
g.spook(m);
g.spook(g);

Monster.spookFactor = 10;
Ghoul ghastly = new Ghoul();
ghastly.haunt();

5



6 Midterm 1 Guerrilla Section

0 David HasselHoF

public interface BinaryFunction {
public int apply(int x, int y);
3

public interface UnaryFunction {
public int apply(int x);

Implement Adder, which implements the BinaryFunction interface and adds two

numbers together.

public class Adder

Implement Add10 which implements UnaryFunction. Its apply method returns x +

10 without using any of the + - * / operators.

public class Add10

Implement Multiplier which implements BinaryFunction. Its apply method ac-
cepts two integers, x and y, and return x * y without using any of the + - * /

operators except to increment indices in loops. Assume all inputs are positive.

public class Multiplier



Midterm 1 Guerrilla Section 7
7 Tri another ang]e Extra

Implement triangularize, which takes an IntList[] R and a single IntlList L,

and breaks L into smaller IntLists, storing them into R.

The IntList at index k of R has at most k + 1 elements of L, in order. Thus

concatenating all of the IntLists in R together in order would give us L back.

Assume R is big enough to do this. For example, if the original L contains [1, 2, 3,
4, 5, 6, 7], and R has 6 elements, then on return R contains [[1], [2, 3], [4,
5, 61, [7]1, [1, [11. If R had only 2 elements, then on return it would contain

[[1]1, [2, 31]. triangularize may destroy the original contents of the IntList

objects in L, but does not create any new IntList objects.
Note: Assume R’s items are all initially null.

1 public static void triangularize(IntList[] R, IntList L) {



8 Midterm 1 Guerrilla Section

8 Arrays of the 2D variety FEztra

Implement diagonalFlip, a method that takes a 2-D array arr of size N x N and
destructively flips arr along the diagonal line from the left bottom to right top.

1 public static void diagonalFlip(int[J[] arr) {

Implement rotate, which takes a 2-D array arr of size N x N and destructively

rotates arr 90 degrees clockwise.

1 public static void rotate(int[][] arr) {



	Take a Knap, hit the sack
	I Like Cats
	Some Sort of Interface
	Arrayana Grande
	Just another fiendly…
	David HasselHoF
	Tri another angle Extra
	Arrays of the 2D variety Extra

