
CS 61B More Sorting
Spring 2019 Exam Prep 13: April 22, 2019

1 Quickselect (Summer 2016, Final)
The Quicksort algorithm can be modified for finding the k-th smallest element in

an array. This is called the Quickselect algorithm, which finds the item at sorted

index j = k−1. The partition step is the same as Quicksort, and only differs in the

recursive call (recursing on the partition that contains the k-th smallest element).

Assume the partitioning is done using the three-way partitioning strategy.

(a) Using the first element of the list as the pivot, show how the list is partitioned

at each step when Quickselect (j = 5) is called, trying to find the sixth smallest

element. Circle the partition that is recursed on at each step.

(b) What is the best and worst case runtime of Quickselect?

Best: Θ(N)

Worst : Θ(N2)

(c) Assume we use Quickselect to find the median of an array and always choose

the median as the pivot. In this case, what would be the best and worst case

runtime of Quicksort?

Best: Θ(N logN)

Worst : Θ(N2)

2 Radix Sorts (Summer 2018, Final)
Suppose we’re considering alternatives to the counting sort algorithm used in LSD

radix sort. When used as the sorting algorithm in LSD radix sort, which of the

following sorts is guaranteed to correctly sort a list in Θ(WN logN) time? Assume

W is the length of the longest key, N is the number of keys, and the radix, R, is

constant.

Mergesort



2 More Sorting

3 Insertion Sort (Summer 2017, Final)
Consider the following unsorted array, and the same array after 4 iterations of

insertion sort. The first iteration starts at index 1 (the second element in the

array). Assume no two elements are equal.

For each row, fill in the bubble that corresponds to the relationship between the

symbols. If there is not enough information, fill in the ? bubble.

4 Sorting (Spring 2017, Final)
(a) Suppose we have N items we want to sort, where N is very large. For each

scenario below, write the number of the “best” sort to sort the numbers or

objects, and give the running time for the absolute worst case as a function of

N . There may be multiple correct answers, and the correct answer may even

be ambiguous. Running time may not be the only consideration for best. In

all cases, assume were using Java.

Choose from among 1: Insertion sort, 2: Merge sort, 3: Quicksort (with Hoare

partitioning), and 4: LSD radix sort. Assume that we want stability when

potentially useful.

Note: A BigInteger is an “immutable arbitrary precision integer”. It can

represent any integer, not just those that fit into 32 bits.



More Sorting 3

(b) A sort is monotonically improving if the number of inversions never in-

creases as the sort is executed. Which sorts from the list below are mono-

tonically improving? Assume that all sorts are as presented during lecture on

arrays. Assume insertion sort and selection sort are in-place. Assume heapsort

is in-place and that the array acts as a max heap. Assume that Quicksort is

non-randomized, uses the leftmost item as pivot, and uses the Hoare partition-

ing strategy.

NOTE: Solutions should also include quicksort.


	Quickselect (Summer 2016, Final)
	Radix Sorts (Summer 2018, Final)
	Insertion Sort (Summer 2017, Final)
	Sorting (Spring 2017, Final)

