
CS 61B Graphs
Spring 2019 Exam Prep 11: April 8, 2019

1 Warmup with MSTs

(a) For the graph above, list the edges in the order they’re added to the MST by

Kruskal’s and Prim’s algorithm. Assume Prim’s algorithm starts at vertex A.

Assume ties are broken in alphabetical order. Denote each edge as a pair of

vertices (e.g. AB is the edge from A to B)

Prim’s algorithm order: AB, BC, BE, EF, BG, CD

Kruskal’s algorithm order: EF, BC, BE, BG, AB, CD

(b) Is there any vertex for which the shortest paths tree from that vertex is the

same as your Prim MST?

Vertex B, A, or G

(c) True/False: Adding 1 to the smallest edge of a graph G with unique edge

weights must change the total weight of its MST

True, either this smallext edge (now with weight +1) is included, or this smallest

edge is not included and some larger edge takes its place. Either way, total

weight increases

(d) True/False: The shortest path from vertex A to vertex B in a graph G is the

same as the shortest path from A to B using only edges in T, where T is the

MST of G.

No, consider vertices C and E in the grpah above

(e) True/False: Given any cut, the maximum-weight crossing edge is in the maxi-

mum spanning tree.

True, We can use the cut-property proof as seen in class, but replace ”smallest”

with ”largest”



2 Graphs

2 Oracle Dijkstra’s
In some graph G, we are given a sorted list of nodes, sorted by their distances from

some start vertex A. Design an algorithm to find the shortest paths tree starting

from A in linear O(V+E) time. This algorithm essentially removes the purpose

of the priority queue in normal Dijkstra’s. When a node is removed from the PQ

normally, this signifies we have found the shortest path from the source to that

node, AND that this node is the next closest node to the source that hasn’t been

visited/marked yet. In a sorted list of nodes, we can simply traverse through the

nodes in order. Therefore, our algorithm is simply to run Dijkastra’s, but instead

of keeping a priority queue we go through our sorted list of nodes in order. Our

runtime is O(V+E)

3 Graph Algorithm Design
For each of the following scenarios, write a brief description for an algorithm for

finding the MST in an undirected, connected graph G.

(a) If all edges have edge weight 1. Hint: Runtime is O(V+E) The key idea here

is that any tree which connects all nodes is an MST. We can run DFS and

take the DFS tree. You could also take a BFS tree, or run Prim’s algorithm

with a queue or stack instead of a priority queue (this would be equivalent to

BFS/DFS). Unfortunately, a modified Kruskal’s will be slightly slower, because

even if we don’t need to sort edges, the union-find operations will take additional

time.

(b) If all edges have edge weight 1 or 2. Hint: Use your algorithm from part (a)

Remove weight 2 edges from the graph so only weight 1 edges remain. Now run

an algorithm from part (a) as far as possible (e.g. find a DFS forest). We will

have some number of connected components. Use these connected components

as nodes in a new graph G*. Look at the weight 2 edges in G. For each edge, if

the nodes containing the two endpoints are not already connected in G*, add an

edge between the two containing nodes in G*. Now we can run our algorithm

from part (a) again to complete the MST.


	Warmup with MSTs
	Oracle Dijkstra's
	Graph Algorithm Design

