1. Consider the Tree class below. Suppose we would like to write a method for this
Tree class, getAncestor(int k, Node target). This method takes in an integer
k and a Node target, and returns the k’th ancestor of target in our tree (you
may assume such an ancestor exists). You may also assume that \(k \geq 0 \), that
target \(!=\) null, and that there are no cycles in our tree before we call this method.

```java
public class Tree<T> {
    private Node root;

    private class Node{
        public T item;
        public ArrayList<Node> children;
    }

    public Node getAncestor(int k, Node target) {
        List<Node> list = ______________________;
        ancestorHelper(___________, ___________, __________);
        return list.get(__________________________);
    }

    private boolean ancestorHelper(______________, ______________, ______________) {
        ______________________;
        if (___________________) {
            return true;
        }
        for (______________________________) {
            if (____________________________)
                return true;
        }
        _______________________;
        return false;
    }
}
```

2. Give a bound on the runtime of getAncestor(int k, Node target) in the best
and worst cases in \(\Theta(\cdot) \) notation in terms of \(N \) and \(k \), for a tree with \(N \) nodes. How
does our choice of list implementation on line 10 affect our runtime?
Kontakte

We're going to make our own Contacts application! The application must perform two operations: `addName(String name)`, which stores a new contact, and `countPartial(String partial)`, which returns the number of contacts whose names begin with `partial`. Implement both of these methods in the `Contacts` class below. You may find the work already done in the private `Node` class, as well as the method `String::charAt(int index)` useful.

```java
public class Contacts {

    private class Node {
        public int ______________;
        public Map<Character, Node> children;

        public Node() {
            ______________;
            children = new HashMap<Character, Node>();
        }
    }

    Node root;

    public Contacts() {root = new Node();}

    public void addName(String name) {
        Node current = root;
        for (____________; ______________; ______) {
            if (______________________________) {
                Node n = new Node();
                ______________;
            }
            ______________;
        }
    }

    public int countPartial(String partial) {
        Node current = root;
        for (____________; ______________; ______) {
            if (______________________________) {
            _________________________;
            }
            else {return 0;}
        }
        return ______________;
    }
}
```
3 KND Trees

A k-d tree is a binary tree where each node contains a point of dimension k. Our goal is to create a tree of points which, when given a k-dimensional coordinate, can find the point closest to that coordinate (i.e. "what is the closest point to (a, b)?").

Each node also has a splitting plane, which is one of these k dimensions. Say a node n has splitting plane x. Then everything to the left of n will have an x-coordinate less than or equal to n’s. Similarly, everything to the right of n will have an equal or greater x-coordinate. If n instead split on y, then the above holds for y-coordinates.

From the Wikipedia page for k-d trees, "As one moves down the tree, one cycles through the k axes used to select the splitting planes."

This means in a 3-dimensional tree:
- the root would have an x-aligned plane
- the roots children would both have y-aligned planes
- the roots grandchildren would all have z-aligned planes
- the roots great-grandchildren would all have x-aligned planes, etc.

1. Consider a 2-d tree in which the root splits on x. Normally, we want to turn a fixed set of points into a k-d Tree, and we don’t have to worry about later additions. This makes it easier to make our Tree bushy. Discuss how you may do this efficiently, and draw a balanced k-d Tree of the points $(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2), (10, 10)$

2. What is the closest point in our tree to the coordinate $(3, 6)$? What about $(2, 5)$? What can you conclude about the worst-case runtime for closest point (otherwise known as nearest neighbor) search in a reasonably bushy k-d tree?