
CS 61B LLRBs, Hashing, Heaps
Spring 2019 Exam Prep 8: March 4, 2019

1 Hashtable Runtimes (Fall 2016 MT2: Q3)
Consider a hash table that uses external chaining and also keeps track of the number

of keys that it contains. It stores each key at most once; adding a key a second

time has no effect. It takes the steps necessary to ensure that the number of keys is

always less than or equal to twice the number of buckets (i.e., that the load factor

is ≤ 2). Assume that its hash function and comparison of keys take constant time.

All bounds should be a function of N , the number of elements in the table.

1. Give Θ() bounds on the worst-case times of adding an element to the table

when the load factor is 1 and when it is exactly 2 before the addition.

Bound for load factor 1: Θ(N). Worse case they are all in the same bucket.

Bound for load factor 2: Θ(N). Assuming that resize doesn’t do an duplicate

check. If the resize is implemented such that there is a duplicate check (i.e.

resize just calls put), it could be Θ(N2).

2. Assume that the hashing function is so good that it always evenly distributes

keys among buckets. What now are the bounds on the worst-case time of

adding an element?

Bound for load factor 1: Θ(1). With a good hash function, you will be

bounded by the load factor, which is constant.

Bound for load factor 2: Θ(N). Resizing takes linear time.

3. Making no assumption about the goodness of the hashing function, suppose

that instead of using linked lists for the buckets, we use some kind of binary

search tree that somehow keeps itself “bushy.” What bound can you place on

the worst-case time for testing to see if an item is in the table?

Bound: Θ(logN). Worst case everything hashes to the same bucket, but

searching will be logN because of the bushy tree.

4. Using the same representation as in part (c), but with a very good hash func-

tion, as in part (b), what bound can you place on the worst-case time for

testing to see if an item is in the table?

Bound: Θ(1)



2 LLRBs, Hashing, Heaps

2 Min Heaps (Spring 2018 MT2 Q6)
Consider the min heap below, where each letter represents some value in the tree.

For each question, indicate which letter(s) correspond to the specified value. Assume

each value in the tree is unique.

H

D

B

A C

F

E G

L

K M

Assuming values are inserted into the heap in increasing order, indicate all letters

which could represent the following values:

Smallest value: H

Median value: K

Largest value: G

Assuming values are inserted into the heap in decreasing order, indicate all letters

which could reprsent the following value:

Smallest value: H

Median value: L

Largest value: A

Assuming values are inserted into the heap in an unknown order, indicate all letters

which could represent the following values:

Smallest value: H

Median value: A B C E F G K L M

Largest value: A C E G K M


