
CS 61B More Sorting
Spring 2019 Discussion 13: April 22, 2019

1 Quicksort
1.1 Sort the following unordered list using stable Quicksort. Assume that we always

choose first element as the pivot and that we use the 3-way merge partitioning

process described in lecture and lab. Show the steps taken at each partitioning

step.

18, 7, 22, 34, 99, 18, 11, 4

-18-, 7, 22, 34, 99, 18, 11, 4

-7-, 11, 4 | 18, 18 | 22, 34, 99

4, 7, 11, 18, 18 | -22-, 34, 99

4, 7, 11, 18, 18, 22 | -34-, 99

4, 7, 11, 18, 18, 22, 34, 99

1.2 What is the best and worst case running time of Quicksort with Hoare Partitioning

on N elements? Give an example of a list of 5 numbers that would result in best

and worst case running time.

Best: ______________ Example list: ___ ___ ___ ___ ___

Worst: _____________ Example list: ___ ___ ___ ___ ___

Best: Θ(N logN) Running Quicksort on a list that has a pivot splits the partition

exactly in half will result in Θ(logN) levels, with the same amount work as above

(i.e. Θ(N) at each level). For example, [3, 1, 2, 5, 4]. An alternative case is

when we have all of the same element in the array (i.e. [15,15,15,15,15]), since

the two pointers in Hoare’s partitioning always end up in the middle.

Worst: Θ(N2). In general, the worst case is such that the partioning scheme re-

peatedly partions an array into one element and the rest.

Running Quicksort on a sorted list will take Θ(N2) if the pivot chosen is always the

first or last in the subarray: [1, 3, 3, 4, 5]. At each level of recursion, you will

need to do Θ(N) work, and there will be Θ(N) levels of recursion. This sums up

to 1 + 2 + · · ·+ N .

1.3 What are two techniques that can be used to reduce the probability of Quicksort

taking the worst case running time?

1. Randomly choose pivots.

2. Shuffle the list before running Quicksort.

2 More Sorting

2 Comparison Sorts Summary
2.1 When choosing an appropriate algorithm, there are often several trade-offs that we

need to consider. Complete the chart for the following sorting algorithms: give the

expected time complexity in the worst case, in the best case, and whether or not

each sort is stable.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

Selection Sort Θ(n2) Θ(n2) No

Insertion Sort Θ(n) Θ(n2) Yes

Heapsort Θ(n) Θ(n log n) No

Mergesort Θ(n log n) Θ(n log n) Yes

Quicksort

(w/ Hoare

Partitioning)

Θ(n log n) Θ(n2) No

More Sorting 3

2.2 For each unstable sort, give an example of a list where the order of equivalent items

is not preserved.

In the following example, we only care about the number. The letter is to distinguish

equal objects.

Selection Sort: 3a, 3b, 3c, 1

[3a 3b 3c *1*]

1 [3b 3c 3a]

1 3b [3c 3a]

1 3b 3c [3a]

Heapsort: 1a, 1b, 1c

Quicksort: 3, 5a, 2, 5b, 1

[-3- *5a* 2 5b ˜1˜]

[-3- 1 2 5b 5a]

[-3- 1 *2* ˜5b˜ 5a]

[-3- 1 2 *˜5b˜* 5a]

[-3- 1 ˜2˜ *5b* 5a]

"L" and "R" pointers cross, swap pivot.

[1 2] 3 [5b 5a]

[-1- 2] 3 [-5b- 5a]

[-1- *˜2˜*] 3 [-5b- *˜5a˜*]

[-1- ˜˜ *2*] 3 [-5b- ˜˜ *5a*]

[-1-] [-2-] 3 [-5b-] [5a]

1 2 3 5b 5a

Note that if using Quicksort that randomizes the array, any array could yield in-

stability.

2.3 In general, what are some other tradeoffs we might want to consider when designing

or choosing a sorting algorithm?

1. Space complexity: The space complexity of an algorithm is the ”extra” mem-

ory usage of an algorithm with respect to the length of the input. Consider

the space complexity of Mergesort in-place and out-of place. For merge sort,

we use an auxiliary array to do the merging, and that takes Θ(n) memory.

There is an in-place variant, but it is a terrible mess. When merge sorting

linked lists, merge sort is still O(n) space, since we create O(n) single item

queues.

2. Constant factors in runtime: especially when working with small inputs.

3. Readability when other engineers are using your algorithm.

4 More Sorting

2.4 Notice that the worst-case runtime in the comparison sorts on an N element array

listed above are lower bounded by Θ(N logN). Can there be a sort that runs faster

than Θ(N logN) in the worst-case?

Yes, if we can avoid sorts that require comparisons, otherwise no. Given N elements,

there are N ! possible permutations. Using a comparison sort, we will need at least

log2(N !) ∈ Ω(N logN). However, with counting sorts, we can avoid the need for

comparisons, and get a runtime that is linear with respect to the number of elements

in the list, though its runtime is greatly dependent on other factors like radix and

word size.

3 Radix Sorts
3.1 Sort the following list using LSD Radix Sort with counting sort. Show the steps

taken after each round of counting sort. The first row is the original list and the

last two rounds are already filled for you.

30395 30326 30392 30315

30395 30326 30392 30315

1 30392 30395 30315 30326

2 30315 30326 30392 30395

3 30315 30326 30392 30395

4 30315 30326 30392 30395

5 30315 30326 30392 30395

3.2 Sort the following list using MSD Radix Sort with counting sort. Show the steps

taken after each round of counting sort. The first row is the original list and the

first three rounds are already filled for you.

30395 30326 30392 30315

The underlined sections denote the digits that have already been sorted.

30395 30326 30392 30315

1 | 30395 30326 30392 30315 |

2 | 30395 30326 30392 30315 |

3 | 30395 30326 30392 30315 |

4 30315 | 30326 | 30395 30392

5 30315 | 30326 | 30392 | 30395

More Sorting 5

3.3 Give the best case runtime, worst case runtime, and whether or not the sort is stable

for both LSD and MSD radix sort. Assume we have N elements, a radix R, and a

maximum number of digits in an element W.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

LSD Radix Sort Θ(W (N + R)) Θ(W (N + R)) Yes

MSD Radix Sort Θ(N + R) Θ(W (N + R)) Yes

3.4 Is radix sort always the best sort to use? Explain why or why not.

No. Though radix sort runs linear with respect to the number of elements in the

list, the runtime also depends on the size of the radix R and the length of the

longest ”word” W (or the number of digits in a number). Additionaly, it is not

always possible to use radix sort, because not all objects can be split up into digits.

However, comparison sorts can be used on any object that defines a compareTo

method, and would work well with compareTo methods that are fast.

6 More Sorting

4 Extra: Bounding Practice
Given an array of n elements, the heapification operation permutes the elements of

the array into a heap. There are many solutions to the heapification problem. One

approach is bottom-up heapification, which treats the existing array as a heap and

rearranges all nodes from the bottom up to satisfy the heap invariant. Another is

top-down heapification, which starts with an empty heap and inserts all elements

into it.

4.1 Why can we say that any solution for heapification requires Ω(n) time?

In order to check that an array satisfies the heap invariant, we have to at least look

at every element, which takes linear time.

4.2 Show that the worst-case runtime for top-down heapification is in Θ(n log n). Why

does this mean that the optimal solution for heapification takes O(n log n) time?

For top-down heapification, where n elements are inserted into a Max Heap and

subsequently popped off, the worst case is when a node needs to swim all the way

up from the bottom at every element inserted.

For example, inserting the first element into the 0th level will require some work.

Inserting the second (and third) element will require swimming up a level into the

1st level, with 2 nodes at that level, results in a total of (21 ∗ (1)) work on that level.

Likewise, inserting the 4th (and 5th, 6th, and 7th) node requires swimming up two

levels for a total work of (22 ∗ (2)) work at the third level. At the ith level, there is

a total work of (2i ∗ i) In a heap with n elements, there are log n levels. The total

work done is the summation of the work to insert all the nodes into a max heap

where the insertion requires a node to swim from the bottom-most row to the top,

such as inserting an array elements that are already in order (1,2,3,4,5...). Then,

we get

log2(n)∑
i=0

i2i ≤
log2(n)∑
i=0

log2(n)2i

= log2(n)

log2(n)∑
i=0

2i

= log2(n) ∗ n //note

log2(n)∑
i=0

2i = 1 + 2 + 4 + ... + 2log2(n) ∈ Θ(n)

= Θ(n log n)

Intuitively, it takes, at worst, log n work to insert a single element into a max heap,

and we have n elements to insert, totalling to n log n work to create the heap.

This means that the optimal solution for heapification takes O(n log n) time since

at least one solution for heapification takes O(n log n) time.

More Sorting 7

4.3 In contrast, bottom-up heapification is an O(n) algorithm. Is bottom-up heapfica-

tion asymptotically-optimal?

Since the running time of bottom-up heapify is Θ(n) and any solution for heapifi-

cation requires Ω(n), bottom-up heapification is asymptotically optimal.

4.4 Show that the running time of bottom-up heapify is Θ(n).

Some useful facts:
∞∑
i=0

xi =
1

1− x

Taking the derivative:

d

dx

(∞∑
i=0

xi

)
=

1

(1− x)2

Running time of heapify is:

logn∑
i=0

i
n

2i+1
=

n

2

(
logn∑
i=0

i

(
1

2

)i
)

≤ n

2

(∞∑
i=0

i

(
1

2

)i
)

=
n

2

1
2

(1
2)2

= Θ(n)

Essentially, the idea is just that each level roughly doubles the work, so the total

runtime dependency on n is linear.

