
CS 61B More Sorting
Spring 2019 Discussion 13: April 22, 2019

1 Quicksort
1.1 Sort the following unordered list using stable Quicksort. Assume that we always

choose first element as the pivot and that we use the 3-way merge partitioning

process described in lecture and lab. Show the steps taken at each partitioning

step.

18, 7, 22, 34, 99, 18, 11, 4

1.2 What is the best and worst case running time of Quicksort with Hoare Partitioning

on N elements? Give an example of a list of 5 numbers that would result in best

and worst case running time.

Best: ______________ Example list: ___ ___ ___ ___ ___

Worst: _____________ Example list: ___ ___ ___ ___ ___

1.3 What are two techniques that can be used to reduce the probability of Quicksort

taking the worst case running time?

2 More Sorting

2 Comparison Sorts Summary
2.1 When choosing an appropriate algorithm, there are often several trade-offs that we

need to consider. Complete the chart for the following sorting algorithms: give the

expected time complexity in the worst case, in the best case, and whether or not

each sort is stable.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

Selection Sort

Insertion Sort

Heapsort

Mergesort

Quicksort

(w/ Hoare

Partitioning)

2.2 For each unstable sort, give an example of a list where the order of equivalent items

is not preserved.

2.3 In general, what are some other tradeoffs we might want to consider when designing

or choosing a sorting algorithm?

2.4 Notice that the worst-case runtime in the comparison sorts on an N element array

listed above are lower bounded by Θ(N logN). Can there be a sort that runs faster

than Θ(N logN) in the worst-case?

More Sorting 3

3 Radix Sorts
3.1 Sort the following list using LSD Radix Sort with counting sort. Show the steps

taken after each round of counting sort. The first row is the original list and the

last two rounds are already filled for you.

30395 30326 30392 30315

30395 30326 30392 30315

1

2

3

4 30315 30326 30392 30395

5 30315 30326 30392 30395

3.2 Sort the following list using MSD Radix Sort with counting sort. Show the steps

taken after each round of counting sort. The first row is the original list and the

first three rounds are already filled for you.

30395 30326 30392 30315

30395 30326 30392 30315

1 | 30395 30326 30392 30315 |

2 | 30395 30326 30392 30315 |

3 | 30395 30326 30392 30315 |

4 | |

5 | | |

3.3 Give the best case runtime, worst case runtime, and whether or not the sort is stable

for both LSD and MSD radix sort. Assume we have N elements, a radix R, and a

maximum number of digits in an element W.

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

LSD Radix Sort

MSD Radix Sort

3.4 Is radix sort always the best sort to use? Explain why or why not.

4 More Sorting

4 Extra: Bounding Practice
Given an array of n elements, the heapification operation permutes the elements of

the array into a heap. There are many solutions to the heapification problem. One

approach is bottom-up heapification, which treats the existing array as a heap and

rearranges all nodes from the bottom up to satisfy the heap invariant. Another is

top-down heapification, which starts with an empty heap and inserts all elements

into it.

4.1 Why can we say that any solution for heapification requires Ω(n) time?

4.2 Show that the worst-case runtime for top-down heapification is in Θ(n log n). Why

does this mean that the optimal solution for heapification takes O(n log n) time?

4.3 In contrast, bottom-up heapification is an O(n) algorithm. Is bottom-up heapfica-

tion asymptotically-optimal?

4.4 Show that the running time of bottom-up heapify is Θ(n).

Some useful facts:
∞∑
i=0

xi =
1

1− x

Taking the derivative:

d

dx

(∞∑
i=0

xi

)
=

1

(1− x)2

	Quicksort
	Comparison Sorts Summary
	Radix Sorts
	Extra: Bounding Practice

