
CS 61B Graphs
Spring 2019 Discussion 11: April 10, 2019

1 Graph Representations

A

B

C

D

E

F G

1.1 Write the graph above as an adjacency matrix, then as an adjacency list. What

would be different if the graph were undirected instead?

Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 0 0 1 0 0 0 0

C 0 0 0 0 0 1 0

D 0 1 0 0 1 1 0

E 0 0 0 0 0 1 0

F 0 0 0 0 0 0 0

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {C}

C: {F}

D: {B, E, F}

E: {F}

F: {}

G: {F}

For the undirected version of the graph, the representations look a bit more sym-

metric. For your reference, the representations are included below:

Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 1 0 1 1 0 0 0

C 0 1 0 0 0 1 0

D 1 1 0 0 1 1 0

E 0 0 0 1 0 1 0

F 0 0 1 1 1 0 1

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {A, C, D}

C: {B, F}

D: {A, B, E, F}

E: {D, F}

F: {C, D, E, G}

G: {F}



2 Graphs

2 Topological Sorting
2.1 Give a valid topological sort of the graph above. For your reference, some orderings

of the graph are provided below.

DFS preorder: ABCFDE (G)

DFS postorder: FCBEDA (G)

BFS: ABDCEF (G)

A valid topological sorting can be obtained by reversing the DFS postorder.

One valid topological sort is G−A−D−E −B −C − F . There are many others.

In particular, G can go anywhere except after F , since it has no incoming edges

and only one outgoing edge (to F ).

G A D E B C F

2.2 There are two requirements that a graph must satisfy in order for there to be a

valid topological sorting of the graph. What are they?

1. The graph must be directed. Topological sorting does not make sense for an

undirected graph.

2. The graph must not have cycles. If a cycle was to exist, say, A,B,C,A, which

node should come first in the topological sort?

Graphs that satisfy both properties are called

Directed Acyclic Graphs (DAGs).



Graphs 3

2.3 Extra: Why does the method to compute a topological sort work?

We will show that it works by considering every possible situation in which dfs

could be called. Consider any edge u, v, and what happens when dfs(u) is called.

Below, we enumerate the possible cases that could happen on such a dfs call.

1. case: dfs(v) was called in the past, and it already returned. In this event, v

takes place before u.

2. case: dfs(v) was called in the past, but hasn’t returned. Observe that this

means there is a path from v to u (because a series of edges let from v to u

through the dfs calls on the neighbors), and now there is an edge from u to

v. This is impossible in a DAG, therefore, this case is impossible.

3. case: dfs(v) is yet to be called. Eventually dfs(v) will definitively get called

before dfs(u) returns (because there is an edge from u to v). And dfs(v) must

return before dfs(u) does because this is a DAG. (See case 2 for justification).

Therefore v takes place before u.

Convince yourself that no other cases exist and therefore our proof is complete.

Furthermore, observe that we make the arguments above for every single dfs call

that the algorithm will ever call, and therefore, our entire argument must be correct.

3 Graph Algorithm Design
3.1 An undirected graph is said to be bipartite if all of its vertices can be divided into

two disjoint sets U and V such that every edge connects an item in U to an item

in V . For example below, the graph on the left is bipartite, whereas on the graph

on the right is not. Provide an algorithm which determines whether or not a graph

is bipartite. What is the runtime of your algorithm?

u v u

v

v

u v ??

To solve this problem, we run a special version of a traversal from any vertex. This

can be implemented with both DFS and BFS. This special version marks the start

vertex with a u, then each of its children with a v, and each of their children with

a u, and so forth. If at any point in the traversal we want to mark a node with u

but it is already marked with a v (or vice versa), then the graph is not bipartite.

If the graph is not connected, we repeat this process for each connected component.

If the algorithm completes, successfully marking every vertex in the graph, then it

is bipartite.

The runtime of the algorithm is the same for BFS and DFS: Θ(E + V ).



4 Graphs

3.2 Consider the following implementation of DFS, which contains a crucial error:

create the fringe, which is an empty Stack

push the start vertex onto the fringe and mark it

while the fringe is not empty:

pop a vertex off the fringe and visit it

for each neighbor of the vertex:

if neighbor not marked:

push neighbor onto the fringe

mark neighbor

Give an example of a graph where this algorithm may not traverse in DFS order.

For the graph above, it’s possible to visit in the order A − B − C − D (which is

not depth-first) because D won’t be put into the fringe after visiting B, since it’s

already been marked after visiting A. One should only mark nodes when they have

actually been visited; in this example, we mark them before we visit them, as we

put them into the fringe.

3.3 Extra: Provide an algorithm that finds the shortest cycle (in terms of the number of

edges used) in a directed graph in O(EV ) time and O(E) space, assuming E > V .

The key realization here is that the shortest directed cycle involving a particular

source vertex s is just the shortest path to a vertex v that has an edge to s, along

with that edge. Using this knowledge, we create a shortestCycleFromSource(s)

subroutine. This subroutine runs BFS on s to find the shortest path to every vertex

in the graph. Afterwards, it iterates through all the vertices to find the shortest

cycle involving s: if a vertex v has an edge back to s, the length of the cycle involving

s and v is one plus distTo(v) (which was computed by BFS).

This subroutine takes O(E+V ) time because it uses BFS and a linear pass through

the vertices. To find the shortest cycle in an entire graph, we simply call the

subroutine on each vertex, resulting in an V · O(E + V ) = O(EV + V 2) runtime.

Since E > V , this is still O(EV ), since O(EV + V 2) ∈ O(EV + EV ) ∈ O(EV ).


