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1.1 Give the DFS preorder, DFS postorder, and BFS order of the graph traversals

starting from vertex A. Break ties alphabetically.

DFS preorder: ABCFDE (G)

DFS postorder: FCBEDA (G)

BFS: ABDCEF (G)

Explanations

DFS preorder and postorder: To compute this, we maintain a stack of nodes,

and a marked set. As soon as we add something to our stack, we note the down

for preorder. The top node in our stack represents the node we are currently on,

and the marked set represents nodes that have been visited. After we add a node

to the stack, we visit its lexicographically next unmarked child. If there is none,

we pop the topmost node from the stack and note it down for postorder. Note that

there are two ways DFS could run: with restart or without; DFS with restart is the

version where if we have exhausted our stack, and still have unmarked nodes left,

we restart on the next unmarked node.

Stack (bottom-top), MarkedSet, Preorder, Postorder.

A. {A}. A. -

AB. {AB}. AB. -

ABC. {ABC}. ABC. -

ABCF. {ABCF}. ABCF. -

ABC. {ABCF}. ABCF. F

AB. {ABCF}. ABCF. FC.

A. {ABCF}. ABCF. FCB.

AD. {ABCFD}. ABCFD. FCB.

ADE. {ABCFDE}. ABCFDE. FCB.

AD. {ABCFDE}. ABCFDE. FCBE.

A. {ABCFDE}. ABCFDE. FCBED.

\-. {ABCFDE}. ABCFDE. FCBEDA.

If DFS restarts on unmarked nodes, the following happens in the last

line. Otherwise, we do not proceed further.

G. {ABCFDEG}. ABCFDEG. FCBEDAG.

BFS: Start at the provided start node. Note it down, and mark it. Now, consider

all nodes that are 1-hop (i.e. one edge) away from the start node. Write all of them

down, and mark all of them. Next, consider all unmrked nodes that are 1-hop away

from the nodes that were 1-hop away from the start (i.e., 2 hops away from the

start). And so on. Note that unlike DFS, BFS uses a queue.

BFS, MarkedSet.

A. {A}.

A BD. {ABD}.

A BD CEF. {ABDCEF}.

If BFS restarts, the following happens at the end. Otherwise, we do not

proceed further..

A BD CEF (G). {ABDCEFG}.
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2 Dijkstra’s Algorithm
For the graph below, let g(u, v) be the weight of the edge between any nodes u

and v. Let h(u, v) be the value returned by the heuristic for any nodes u and v.

Edge weights Heuristics

g(A,B) = 1 h(A,G) = 8

g(B,C) = 3 h(B,G) = 6

g(C,F ) = 4 h(C,G) = 5

g(C,G) = 4 h(F,G) = 1

g(F,G) = 1 h(D,G) = 6

g(A,D) = 2 h(E,G) = 3

g(D,E) = 3

g(E,G) = 3

2.1 Run Dijkstra’s algorithm to find the shortest paths from A to every other vertex.

You may find it helpful to keep track of the priority queue and make a table of

current distances.

Pseudocode

1 PQ = new PriorityQueue()

2 PQ.add(A, 0)

3 PQ.add(v, infinity) # (all nodes except A).

4

5 distTo = {} # map

6 distTo[A] = 0

7 distTo[v] = infinity # (all nodes except A).

8

9 while (not PQ.isEmpty()):

10 poppedNode, poppedPriority = PQ.pop()

11

12 for child in poppedNode.children:

13 if PQ.contains(child):

14 potentialDist = distTo[poppedNode] + edgeWeight(poppedNode, child)

15 if potentialDist < distTo[child]:

16 distTo.put(child, potentialDist)

17 PQ.changePriority(child, potentialDist)
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B = 1 ; C = 4 ; D = 2 ; E = 5 ; F = 6 ; G = 7

Explanation: We will maintain a priority queue and a table of distances found so

far, as suggested in the problem and pseudocode. We will use {} to represent the

PQ, and (()) to represent the table of distances.

{A:0, B:inf, C:inf, D:inf, E:inf, F:inf, G:inf}. (()).

Pop A.

{B:inf, C:inf, D:inf, E:inf, F:inf, G:inf}. ((A: 0)).

changePriority(B, 1). changePriority(D, 2).

{B:1, D:2, C:inf, E:inf, F:inf, G:inf}. ((A: 0)).

Pop B.

{D:2, C:inf, E:inf, F:inf, G:inf}. ((A: 0, B: 1)).

changePriority(C, 4).

{D:2, C:4, E:inf, F:inf, G:inf}. ((A: 0, B: 1)).

Pop D.

{C:4, E:inf, F:inf, G:inf}. ((A: 0, B: 1, D: 2)).

changePriority(E, 5).

{C:4, E:5, F:inf, G:inf}. ((A: 0, B: 1, D: 2)).

Pop C.

{E:5, F:inf, G:inf}. ((A: 0, B: 1, D: 2, C: 4)).

changePriority(F, 6). changePriority(G, 8).

{E:5, F:6, G:8}. ((A: 0, B: 1, D: 2, C: 4)).

Pop E.

{F:6, G:8}. ((A: 0, B: 1, D: 2, C: 4, E: 5)).

potentialDistToG = 8, which is the same. No change priority.

Pop F.

{G:8}. ((A: 0, B: 1, D: 2, C: 4, E: 5, F: 6)).

potentialDistToG = 7. changePriority(G, 7).

{G:7}. ((A: 0, B: 1, D: 2, C: 4, E: 5, F: 6)).

Pop G.

{}. ((A: 0, B: 1, D: 2, C: 4, E: 5, F: 6, G: 7)).
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2.2 Given the weights and heuristic values for the graph below, what path would A*

search return, starting from A and with G as a goal?

Pseudocode

1 PQ = new PriorityQueue()

2 PQ.add(A, h(A))

3 PQ.add(v, infinity) # (all nodes except A).

4

5 distTo = {} # map

6 distTo[A] = 0

7 distTo[v] = infinity # (all nodes except A).

8

9 while (not PQ.isEmpty()):

10 poppedNode, poppedPriority = PQ.pop()

11 if (poppedNode == goal): terminate

12

13 for child in poppedNode.children:

14 if PQ.contains(child):

15 potentialDist = distTo[poppedNode] + edgeWeight(poppedNode, child)

16

17 if potentialDist < distTo[child]:

18 distTo.put(child, potentialDist)

19 PQ.changePriority(child, potentialDist + h(child))

A* would return A−D − E −G. The cost here is 2 + 3 + 3 = 8.

Explanation: A* runs in a very similar fashion to Dijkstra’s. The only difference is

the priority in the priority queue. For A*, whenever computing the priority (for the

purposes of the priority queue) of a particular node n, always add h(n) to whatever

you would use with Dijkstra’s.

2.3 Is the heuristic admissible? Why or why not?

A heuristic is admissible if all of its estimations h(x) are optimistic. No it’s not,

because the actual shortest path from A → G is of cost 7 if we take the northern

route, but the heuristic estimates it will cost 8.

3 Minimum Spanning Trees
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3.1 Perform Prim’s algorithm to find the minimum spanning tree. Pick A as the initial

node. Whenever there is more than one node with the same cost, process them in

alphabetical order.

Prim’s operates by engulfing nodes. Begin by engulfing A. Consider all the edges

outgoing from the engulfed nodes: out of AC and AB, AC is the cheapest. So we

engulf C (using edge AC).

Now, we take our engulfed set (AC), and look at outgoing edges. Candidates: AB,

BC, CD, CE. We take the cheapest, AB, and engulf B.

Out of (ABC), candidates: BD, CD, CE. We take the cheapest, BD, and engulf D.

Out of (ABCD), candidates: CE, DE, DF. We take the cheapest and lexicographi-

cally smallest, CE, and engulf E.

Finally, we take EF.

Edges picked: AC, AB, BD, CE, EF.

3.2 Use Kruskal’s algorithm to find a minimum spanning tree. When deciding between

equiweighted edges, alphabetically sort the edge, and then pick in lexicographic

order.

For instance, edges are always written as AB or AC, never BA or CA. If deciding

between AB and AC, pick AB first.

Kruskal’s first considers the weight 1 edges. Out of AC, BD and EF, we first pick

AC, then BD, then EF since picking all 3 does not create cycles. Next, we consider

weight 2 edges. We start with AB, and pick it since it doesn’t create any cycles.

Next, we consider BC which creates a cycle (ABCA), so we skip it. Next, we

consider CD, which creates a cycle (ABDCA), so we skip it.

Next, we consider weight 3 edges, starting with CE. It does not create a cycle, so

we pick it. At this point, we stop because we have a spanning tree.

In this case, Prim and Kruskal’s output the same MST. This is not always the case.
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B D F

1 3
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