
CS 61B Traversals, Tries, K-d Trees
Spring 2019 Discussion 9: March 18, 2019

Tree Traversals
10

3

1 7

12

11 14

13 15

1.1 Write the pre-order, in-order, post-order, and level-order traversals of the above

binary search tree.

Pre-order: 10 3 1 7 12 11 14 13 15

In-order: 1 3 7 10 11 12 13 14 15

Post-order: 1 7 3 11 13 15 14 12 10

Level-order (BFS): 10 3 12 1 7 11 14 13 15

Tries
2.1 What strings are stored in the trie below? Now insert the strings indent, inches,

and trie into the trie. Extra: How could you modify a trie so that you can efficiently

determine the number of words with a specific prefix in the trie?

I

N

D

E

X

H O

FC

The strings originally contained in the trie are inch, index, and info.



2 Traversals, Tries, K-d Trees

The trie after inserting indent, inches, and trie.

I

N

D

E

X

H O

FC

N

TS

E

T

R

E

I

Extra:

We can add a numWordsBelow variable to each of the nodes in our trie. When we

insert we will increment this variable for all nodes on the path to insertion. In order

to determine the number of words that start with a specific prefix, we can traverse

the trie following the letters in the prefix. Once we reach the end of the prefix, we

return numWordsBelow of the last character in the prefix, or 0 if the entrie prefix is

not contained in the tree. If the length of the prefix is k then this code will run in

Θ(k) in the worst case. If we have the case that the lengths of the strings will be

assumed to be a constant, then this runtime of Θ(k) will actually be Θ(1) as we

drop the constant coefficients.

K-d Trees

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

3.1 Given the points shown in the grid above, create a perfectly balanced k-d tree.



Traversals, Tries, K-d Trees 3

For this tree, first split on the x dimension. After creating the tree draw the

corresponding splitting planes on the grid above. Hint: For this your resulting tree

should be a complete tree of height 2.

There are several different ways to create a k-d tree and in 3.1 and 3.2 we will

explore the two most common approaches. The first approach will be to create

a perfectly balanced tree given all of the points at the start. Given the full set

of points what we want to have is that each node should partition the remaining

points into two equal halves which will be passed down to the node’s left and right

children. In doing this we need to adhere to the invariants of the k-d tree. For

example if we are splitting on x the points passed into the left child should have

x-values less than the median point’s x-value and the points passed into the right

child should have the x-values greater than the median point’s x-value. As we have

already sorted the list we can take the sublist of the points before the median and

pass them along to the left subtree and then take the points after the median and

pass them along to the right subtree.

In order to implement this at each node we should sort the points based off of their

x or y coordinates depending on if we are splitting on x or y. After we have done

this we will select the median point to be the current point and then we will create

left and right subtrees based off of the sublists of points split by the median.

For our case of points we can see that if we first split on x we will sort the points on

x yielding (1,5), (2,2), (4,9), (5,6), (7,3), (8,7), (9,1). The median of this list is (5,6)

so this will become our trees root. We will make recursive calls passing in the list of

points (1,5), (2,2), (4,9) and (7,3), (8,7), (9,1) to the left and right subtrees. This

process will repeat until we are left with the following tree which will be perfectly

balanced.

(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

We can also visualize the k-d tree points in space by drawing on the splitting planes

as is shown below.



4 Traversals, Tries, K-d Trees

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

3.2 Insert the point (6,2) into the balanced k-d tree from above.

The secondary approach to constructing a k-d tree is to simply add the points one

at a time. The trade off here is that the code for this method will likely be simpler,

but now we are not guaranteed to have a perfectly balanced tree. Thinking back to

BSTs there were cases where if you inserted elements in a certain order the resulting

BST would end up being spindly and the same thing can happen for k-d trees. If

we want to improve our runtime compared to the naive solution, we want to have at

least a roughly balanced tree. One thing that we can do to increase the likelihood

of creating a roughly balanced tree is to randomize the order of insertion. This

again will not create a perfectly balanced tree as before, but in expectation the tree

should be roughly balanced. In doing this we expect to come close to a perfectly

balanced tree, but with much simpler code.

Now we will walk through the insertion of the single point (6,2) into our exising

k-d tree from 3.1. We begin at the root which corresponds to the point (5,6). We

are splitting on x at this top node and the x value of the point to be inserted, 6, is

greater than that of the root’s x-value, 5, so we proceed to the right.

Next the current point corresponds to the point (7,3). We are splitting on y at this

node and the y value of the point to be inserted, 2, is less than that of the current

node’s y-value, 3, so we proceed to the left.

Now the current point corresponds to the point (9,1). We are splitting on x at this

node and the x value of the point to be inserted, 6, is less than that of the current

node’s x-value, 9, so we proceed to the left. This corresponds to a null child, so we

will insert the new point at this location in our tree.

Below we can see updated diagrams corresponding to the two views of our k-d tree.



Traversals, Tries, K-d Trees 5

(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

(6, 2)

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

3.3 Find the nearest point to (3,6) in the above k-d tree. Which branches of the k-d

tree can be pruned (not visited) in our execution of the nearest algorithm.

K-d Tree Nearest Algorithm:

Given a query point p we will do the following starting at the root node. We will

not recurse on all nodes in the tree, as we will likely be able to prune large portions

of the tree. One way to structure this is to have the call to nearest call a helper

function that takes in 3 arguments: n the node in the tree that we are currently

visiting, p the query point, and globalBest the closest node we have seen so far.

To start we will make the call nearestHelper(root, p, root).

1. We check if the current node, n we are at in the tree is closer to p than the

globalBest that was passed in. If it is indeed closer update globalBest to be n.

2. Next we must recurse in either direction of the splitting plane in order to de-

termine if there is a closer node to the query point in that half of the tree (or

subtree). As we know where the query point lies with respect to the splitting

plane we will first recurse in the direction of the query point (intuitively we ex-

pect the closest point to be in the direction of the query point although this is

not always the case). This side of the tree we can think of as the ”good side”

For example if n represents the point (3,4), we are splitting on x, and the query



6 Traversals, Tries, K-d Trees

point p is (2,5) then we will first recurse on the left child of n as 2 < 3. This

recursive call will either return the current value of globalBest if no closer node

was discovered or it will return the new closest point which globalBest should

be updated to.

3. Now we need to consider if the other side of the tree (the ”bad side”) needs to be

checked. We only want to check this side of the tree if it is possible that a closer

point than the globalBest could exist on that side of the tree. If it is impossible

for such a point to lie on that side of the tree then we will prune that branch.

For this we will do the following:

1. We can imagine a circle which is centered at the query point, p, with the same

radius as the distance from the p to the globalBest. This circle represents

the region in cartesian space where it is possible that a closer point than

globalBest could lie if it does exist. To see if we need to check the other

side of the tree we can see if this circle intersects the splitting plane such

that some portion of the circle lies on either side of the splitting plane. (Note

in 2-dimensions we can use circles and our splitting planes will be lines, but

in higher dimensions the circles will be replaced with hyperspheres and the

splitting planes will be hyperplanes).

To determine if the circle intersects the splitting plane, we can reduce this to

a slightly simpler calculation. We notice that if a point did exist in the other

side of the splitting plane, the closest that it could exist to the query point

would be perpendicular to the splitting plane in line with the query point.

For example suppose the query point is (5,5) and the current node contains

the point (4, 3) where we split on x. Space is split into points with x > 4 and

x < 4. For this we would first search the tree corresponding to points with

x > 4. If the current best found when searching this half of the tree is (5,7).

The closest point to the query point that is on the other side of the splitting

plane would be (4,5). Now we can see that the current best is distance 2 away

from the query point, but there are possible points on the other side of the

splitting plane that could be distance 1 away, so we must check the other side

of the plane.

2. If we did end up recursing on the other side of the tree (or subtree), similarly

this will either return the current value of globalBest if no closer node was

discovered or it will return the new closest point which globalBest should be

updated to.

4. Return globalBest.

Walkthrough of Specific Call to Nearest

We begin at the root of the tree, so n corresponds to the point (5,6), additionally

globalBest will correspond to (5,6). The query point p will be (3,6). In this case n

is the same as globalBest so we do not need to update globalBest. Next n splits

on x, so we compare the x-values of n and p. We see that the good side of the tree

will be the left side (corresponding to x-values less than 5) as 3 < 5, so we will first

recurse on the left side.



Traversals, Tries, K-d Trees 7

Now n corresponds to the point (1,5), and p and globalBest remain unchanged.

We see that n is distance 2.236 away from p which is worse than globalBest which

is distance 2 away, so we do not need to update globalBest. Next n splits on y, so

we compare the y-values of n and p. We see that the good side of the tree will be

the right side (corresponding to y-values greater than 5) as 6 > 5, so we will first

recurse on the right side.

Now n corresponds to the point (4,9), and p and globalBest remain unchanged.

We see that n is distance 3.162 away from p which is worse than globalBest which

is distance 2 away, so we do not need to update globalBest. Next n splits on x, so

we compare the x-values of n and p. We see that the good side of the tree will be

the left side (corresponding to x-values less than 4) as 3 < 4, so we will first recurse

on the left side.

Now n corresponds to null as there is no left child of the node corresponding to (4,

9). In this case we simply return globalBest which is (5,6).

After returning from this recursive call we are now once again at the node where n

corresponds to the point (4,9). Now we need to make a decision of whether or not

we should visit the “bad side” of the tree. We can begin by visualizing the circle

mentioned above.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

If a point exists that is closer to p than globalBest then it must be less than

distance 2 away from p. The circle corresponds to the region which would contain

these points if they exist in our tree. What we can see is that this circle overlaps

the splitting plane (the line corresponding to the x-value 4). This means that it is

possible that a point does exist on the other side of the splitting plane that is closer

to p than globalBest, so we must recurse on the “bad side.”

In code however the notion of creating a circle can be simplified to the following.

We can consider the closest point to p on the other side of the splitting plane.

This will correspond to the point that lies at the intersection of the splitting plane

corresponding to n and the line perpendicular from the splitting plane that passes

through the query point p. In this case we can see that this closest point that could



8 Traversals, Tries, K-d Trees

lie on the other side of the splititng plane defined by the point (4,9) split on x

would be the point (4,6). Now we can compare the distance from globalBest to

p to the distance from this hypothetical new best point to p. If the distance from

globalBest to p is greater then we must check the “bad side,” otherwise we can

prune.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

Again we are considering the case where n is (4,9), p is (3,6), and the globalBest

is (5,6). The green line above corresponds to the shortest distance to the splitting

plane which would be of distance 1. This is less than 2, the distance from p to

globalBest. So we must visit the “bad side”.

When we recurse on the bad side n corresponds to null as there is no right child of

the node corresponding to (4, 9). In this case we simply return globalBest which

is (5,6). Now that we have visited all of the children of (4,9) we can return the

globalBest which will still be (5,6).

Now we have returned back to where n corresponds to the point (1,5). We have

visited the “good side” where we did not find anything better than the globalBest,

so globalBest is not updated. Next we need to consider if we need to explore the

“bad side” of n. Once again we can visualize this using the same rule as above.



Traversals, Tries, K-d Trees 9

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

We see that as the circle does overlap the splitting plan we will need to visit the

“bad side” of the tree. Again we can also look at the closest hypothetical point to

p on the other side of the splitting plane. This again corresponds to the green line

above, and we can see that this distance is again 1, compared to the distance of 2

between globalBest and p, so we again we must explore the other side of the tree.

Now n corresponds to the point (2,2) We see that n is distance 4.123 away from

p which is worse than globalBest which is distance 2 away, so we do not need to

update globalBest. Next n splits on x, so we compare the x-values of n and p. We

see that the “good side” of the tree will be the right side (corresponding to x-values

greater than 2) as 3 > 2, so we will first recurse on the left side.

After recursing, n corresponds to null as there is no right child of the node corre-

sponding to (2, 2). In this case we simply return globalBest which is still (5,6).

Next we have to consider if we need to check the “bad side” of n. In this case the

check is a bit iteresting. What we can see is the points corresponding to the left child

of n (which again is (2,2)) will be points with x-values less than 2 and y-values less

than 5. When we consider doing the same perpendicular closest point we can see

that this will correspond to the point (2,6) which is actually not contained within

this region. Essentially the rule we introduced above gives a weaker condition of

pruning, as the closest actual point to p that exists in this region of points would

be the upper right hand corner of this region, namely (2,5). Since the closest actual

point would be (2,5), ideally we should be comparing that distance from p to this

point (2,5). We can see this visualized below.



10 Traversals, Tries, K-d Trees

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

In the above the green line corresponds to the distance rule we have been using,

whereas the orange line corresponds to the distance that would be used in the

optimal pruning case. From this what we can see is that the perpendicular distance

will always be less than this diagonal distance, so by doing the simpler pruning

check our algorithm is still correct although it might visit slightly more nodes in

our tree than necessary. For implementing this code, it will be much simpler to just

use the simpler perpendicular rule. As such we will choose to ignore this slightly

more optimal pruning rule, but it is important to know that it does exist.

Regardless we see that we do need to check the “bad side” so we recurse on the left

child of the node corresponding to (2,2). In this case now n will again be null so we

return the current best, (5,6).

At this point we can now return to the call where n is (1,5). We have visited both

the “good side” and the “bad side” so we can return the globalBest but this has

not been updated so we will return the node corresponding to (5,6).

Finally we return to the call where n is the root, (5,6). Once more we need to

check if we need to explore the other side of the tree. In this case we can see that

the circle is tangent to the splitting plane, or equivalently the best possible point

perpendicular from p is distance 2 away from p. As we already have the globalBest

storing a point that is distance 2 away from p then we do not need to explore

the other side of the tree, as the best we can do is equivalent to what we already

have. Here we prune the entire right half of the tree and return globalBest which

corresponds to the point (5,6).

Below is the tree that shows which nodes were explored and which we were able to

prune where the dashed lines and nodes corresponds to what we pruned.



Traversals, Tries, K-d Trees 11

(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

(6, 2)


