
CS 61B LLRBs, Hashing, Heaps
Spring 2019 Discussion 8: March 11, 2019

1 2-3 Trees and LLRB’s
1.1 Draw what the following 2-3 tree would look like after inserting 18, 38, 12, 13, and

20.

8

4 6

3 5 7

14

10 15

1.2 Now, convert the resulting 2-3 tree to a left-leaning red-black tree.

1.3 Extra: If a 2-3 tree has depth H (that is, the leaves are at distance H from the root),

what is the maximum number of comparisons done in the corresponding red-black

tree to find whether a certain key is present in the tree?



2 LLRBs, Hashing, Heaps

2 Hashing
2.1 Here are three potential implementations of the Integer’s hashCode() function.

Categorize each as either a valid or an invalid hash function. If it is invalid, explain

why. If it is valid, point out a flaw or disadvantage.

1 public int hashCode() {

2 return -1;

3 }

1 public int hashCode() {

2 return intValue() * intValue();

3 }

1 public int hashCode() {

2 return super.hashCode();

3 }

2.2 Extra, but highly recommended: For each of the following questions, answer Always,

Sometimes, or Never.

(a) When you modify a key that has been inserted into a HashMap will you be able

to retrieve that entry again? Explain.

(b) When you modify a value that has been inserted into a HashMap will you be

able to retrieve that entry again? Explain.



LLRBs, Hashing, Heaps 3

3 Heaps of Fun
3.1 Assume that we have a binary min-heap (smallest value on top) data structure called

Heap that stores integers, and has properly implemented insert and removeMin

methods. Draw the heap and its corresponding array representation after each of

the operations below:

1 Heap<Character> h = new Heap<>();

2 h.insert('f');

3 h.insert('h');

4 h.insert('d');

5 h.insert('b');

6 h.insert('c');

7 h.removeMin();

8 h.removeMin();

3.2 Your friendly TA Tina challenges you to quickly implement an integer max-heap

data structure. “Hah! I’ll just use my min-heap implementation as a template to

write MaxHeap.java,” you think to yourself. Unfortunately, due to following the

instructions of a shady stackoverflow post, you manage to permanently delete your

MinHeap.java file. Luckily, you notice that you still have MinHeap.class. Can you

still complete the challenge before time runs out?

Hint : Although you cannot alter them, you can still use methods from MinHeap.


	2-3 Trees and LLRB's
	Hashing
	Heaps of Fun

