
CS 61B Disjoint Sets and Asymptotics
Spring 2019 Discussion 6: February 25, 2019

1 Disjoint Sets, a.k.a. Union Find
In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union

Find ADT. Today, we will use union find terminology so that you have seen both.



2 Disjoint Sets and Asymptotics

1.1 What are two improvements that we made to our naive implementation of the Union

Find ADT during lecture 14 (Monday’s lecture)?

(a) Improvement 1: union by size

(b) Improvement 2: path compression

The naive implementation was maintaining a List<Set<Integer>>. Improvements

made were:

- Keeping track of sets rather than connections (QuickFind)

- Tracking set membership by recording parent not set # (QuickUnion)

- Union by Size (WeightedQuickUnion)

- Path Compression (WeightedQuickUnionWithPathCompression)

We will focus on attention on the last two, union by size and path compression.

1.2 Assume we have nine items, represented by integers 0 through 8. All items are

initially unconnected to each other. Draw the union find tree, draw its array rep-

resentation after the series of union() and find() operations, and write down the

result of find() operations using only improvement 1. Break ties by choosing

the smaller integer to be the root.

Note: union is the same as the connect operation from lecture. find(x) returns

the root of the tree for item x.

union(2, 3);

union(1, 2);

union(5, 7);

union(8, 4);

union(7, 2);

find(3);

union(0, 6);

union(6, 4);

union(6, 3);

find(8);

find(6);

find() returns 2, 2, 2 respectively.

The array is [2, 2, -9, 2, 0, 2, 0, 5, 4]. 2

0 1 3 5

4 6 7

8

1.3 Repeat the above part, using both improvement 1 and 2.

find() returns 2, 2, 2 respectively.

The array is [2, 2, -9, 2, 2, 2, 2, 5, 2]. 2

0 1 3 4 5 6 8

7



Disjoint Sets and Asymptotics 3

2 Asymptotics
2.1 Order the following big-O runtimes from smallest to largest.

O(log n), O(1), O(nn), O(n3), O(n log n), O(n), O(n!), O(2n), O(n2 log n)

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2 log n) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!) ⊂ O(nn)

2.2 Are the statements in the right column true or false? If false, correct the asymptotic

notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound. Ω(·) is the opposite

of O(·), i.e. f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)).

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

f(n) = n log n

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

g(n) = (logn)2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n))

• True, although Θ(·) is a better bound.

• False, O(·). Even though n3 is strictly worse than n2, n2 is still in O(n3)

because n2 is always as good as or better than n3 and can never be worse.

• True, although Θ(·) is a better bound.

• False, O(·).

• True.

• True.

• False, Ω(·).

2.3 Give the worst case and best case runtime in terms of M and N . Assume ping is

in Θ(1) and returns an int.

1 int j = 0;

2 for (int i = N; i > 0; i--) {

3 for (; j <= M; j++) {

4 if (ping(i, j) > 64) break;

5 }

6 }

Worst: Θ(M + N), Best: Θ(N) The trick is that j is initialized outside the loops!



4 Disjoint Sets and Asymptotics

2.4 Give the worst case and best case runtime where N = array.length. Assume

mrpoolsort(array) is in Θ(N logN) and returns array sorted.

1 public static boolean mystery(int[] array) {

2 array = mrpoolsort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean x = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j]) x = true;

8 }

9 if (!x) return false;

10 }

11 return true;

12 }

Worst: Θ(N2), Best: Θ(N logN) Remember sorting in the beginning!

(a) What is mystery() doing?

mystery() returns true if every int has a duplicate in the array (ex. {1, 2,

1, 2}) and false if there is any unique int in the array (ex. {1, 2, 2}).

(b) Using an ADT, describe how to implement mystery() with a better runtime.

Then, if we make the assumption an int can appear in the array at most twice,

develop a solution using only constant memory.

Note: ADT’s weren’t covered in lecture yet at this time, so don’t worry if you

are having trouble remembering them!

A Θ(N) algorithm is to use a map and do key = element and value = number

of appearances, then make sure all values are > 1. Uses O(N) memory however.

Can do constant space by sorting then going through, but sorting is generally

in O(n log n) time.


