1 Disjoint Sets, a.k.a. Union Find

In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union Find ADT. Today, we will use union find terminology so that you have seen both.

1.1 What are two improvements that we made to our naive implementation of the Union Find ADT during lecture 14 (Monday’s lecture)?

(a) Improvement 1: ________________________________

(b) Improvement 2: ________________________________

1.2 Assume we have nine items, represented by integers 0 through 8. All items are initially unconnected to each other. Draw the union find tree, draw its array representation after the series of union() and find() operations, and write down the result of find() operations using only improvement 1. Break ties by choosing the smaller integer to be the root.

Note: union is the same as the connect operation from lecture. find(x) returns the root of the tree for item x.

union(2, 3);
union(1, 2);
union(5, 7);
union(8, 4);
union(7, 2);
find(3);
union(0, 6);
union(6, 4);
union(6, 3);
find(8);
find(6);

1.3 Repeat the above part, using both improvement 1 and 2.

2 Asymptotics

2.1 Order the following big-O runtimes from smallest to largest.

\[O(\log n), O(1), O(n^n), O(n^3), O(n \log n), O(n), O(n!), O(2^n), O(n^2 \log n) \]
2.2 Are the statements in the right column true or false? If false, correct the asymptotic notation \(\Omega(\cdot), \Theta(\cdot), O(\cdot) \). Be sure to give the tightest bound. \(\Omega(\cdot) \) is the opposite of \(O(\cdot) \), i.e. \(f(n) \in \Omega(g(n)) \iff g(n) \in O(f(n)) \).

\[
\begin{align*}
 f(n) &= 20501 & g(n) &= 1 & f(n) \in O(g(n)) \\
 f(n) &= n^2 + n & g(n) &= 0.000001n^3 & f(n) \in \Omega(g(n)) \\
 f(n) &= 2^{2n} + 1000 & g(n) &= 4^n + n^{100} & f(n) \in O(g(n)) \\
 f(n) &= \log(n^{100}) & g(n) &= n \log n & f(n) \in \Theta(g(n)) \\
 f(n) &= n \log n + 3n + n & g(n) &= n^2 + n + \log n & f(n) \in \Omega(g(n)) \\
 f(n) &= n \log n + n^2 & g(n) &= \log n + n^2 & f(n) \in \Theta(g(n)) \\
 f(n) &= n \log n & g(n) &= (\log n)^2 & f(n) \in O(g(n))
\end{align*}
\]

2.3 Give the worst case and best case runtime in terms of \(M \) and \(N \). Assume \texttt{ping} is in \(\Theta(1) \) and returns an \texttt{int}.

```java
int j = 0;
for (int i = N; i > 0; i--) {
  for (; j <= M; j++) {
    if (ping(i, j) > 64) break;
  }
}
```

2.4 Give the worst case and best case runtime where \(N = \text{array.length} \). Assume \texttt{mrpoolsort(array)} is in \(\Theta(N \log N) \) and returns \texttt{array sorted}.

```java
public static boolean mystery(int[] array) {
  array = mrpoolsort(array);
  int N = array.length;
  for (int i = 0; i < N; i += 1) {
    boolean x = false;
    for (int j = 0; j < N; j += 1) {
      if (i != j && array[i] == array[j]) x = true;
    }
    if (!x) return false;
  }
  return true;
}
```

(a) What is \texttt{mystery()} doing?

(b) Using an ADT, describe how to implement \texttt{mystery()} with a better runtime.

Then, if we make the assumption an \texttt{int} can appear in the \texttt{array} at most twice, develop a solution using only constant memory.