
CS 61B Iterators and Iterables
Spring 2019 Discussion 5: February 18, 2018

1 Iterators Warmup
1. If we were to define a class that implements the interface Iterable<Integer>,

what method(s) would this class need to define? Write the function signa-

ture(s) below.

2. If we were to define a class that implements the interface Iterator<Integer>,

what method(s) would this class need to define? Write the function signa-

ture(s) below.

3. What’s one difference between Iterator and Iterable?

2 OHQueue
The goal for this question is to create an iterable Office Hours queue. We’ll do so

step by step.

The code below for OHRequest represents a single request. Like an IntNode, it has

a reference to the next request. description and name contain the description of

the bug and name of the person on the queue.

1 public class OHRequest {

2 public String description;

3 public String name;

4 public OHRequest next;

5

6 public OHRequest(String description, String name, OHRequest next) {

7 this.description = description;

8 this.name = name;

9 this.next = next;

10 }

11 }

2 Iterators and Iterables

First, let’s define an iterator. Create a class OHIterator that implements an iterator

over OHRequest objects that only returns requests with good descriptions. Our

OHIterator’s constructor will take in an OHRequest object that represents the first

OHRequest object on the queue. We’ve provided a function, isGood, that accepts a

description and says if the description is good or not.

1 import java.util.Iterator;

2 public class OHIterator __ {

3 OHRequest curr;

4

5 public OHIterator(OHRequest queue) {

6

7 }

8

9 public boolean isGood(String description) {

10 return description != null && description.length() > 5;

11 }

12

13

14

15

16

17

18

19

20

21 }

Now, define a class OfficeHoursQueue. We want our OfficeHoursQueue to be it-

erable, so that we can process OHRequest objects with good descriptions. Our

constructor will take in an OHRequest object representing the first request on the

queue.

1 import java.util.Iterator;

2

3 public class OfficeHoursQueue __________________________________ {

4

5

6 public OfficeHoursQueue (OHRequest queue) {

7

8 }

9

10

11

12

13

14

15 }

Iterators and Iterables 3

Fill in the main method below so that you make a new OfficeHoursQueue object

and print the names of people with good descriptions. Note : the main method is

part of the OfficeHoursQueue class.

1 public class OfficeHoursQueue ... {

2

3

4 public static void main(String [] args) {

5 OHRequest s1 = new OHRequest("Failing my test for get in arrayDeque, NPE", "Pam", null);

6 OHRequest s2 = new OHRequest("conceptual: what is dynamic method selection", "Michael", s1);

7 OHRequest s3 = new OHRequest("git: what does checkout do.", "Jim", s2);

8 OHRequest s4 = new OHRequest("help", "Dwight", s3);

9 OHRequest s5 = new OHRequest("debugging get(i)", "Creed", s4);

10

11

12 for (_____________ : ________________) {

13

14 }

15

16 }

4 Iterators and Iterables

3 Thank u, next
Now that we have our OfficeHoursQueue from problem 2, we’d like to add some

functionality. We’ve noticed that occasionally in office hours, the system will put

someone on the queue twice. It seems that this happens whenever the description

contains the words “thank u.” To combat this, we’d like to define a new iterator,

TYIterator.

If the current item’s description contains the words “thank u,” it should skip the

next item on the queue. As an example, if there were 4 OHRequest objects on the

queue with descriptions ["thank u", "thank u", "im bored", "help me"], calls to

next() should return the 0th, 2nd, and 3rd OHRequest objects on the queue. Note:

we are still enforcing good descriptions on the queue as well!

hint : to check if a description contains the words “thank u”, you can use

curr.description.contains("thank u")

1 public class TYIterator ___ {

2

3 public TYIterator(OHRequest queue) {

4

5 }

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 }

	Iterators Warmup
	OHQueue
	Thank u, next

